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Abstract: What is the structure of many-body quantum phases and transitions in the presence of non-unitary elements, such as decoherence or
measurements? In this talk we explore two new directions. First, recent works have shown that even if one starts with an ideal preparation of
topological order such as the toric code, decoherence can lead to interesting mixed states with subtle phase transitions [e.g., Fan et d,
arXiv:2301.05689]. Mativated by a recent experimental realization of non-Abelian topological order [Igbal et a, Nature 626 (2024)], we generalize
this to decohered non-Abelian states, based on work with Pablo Sala and Jason Alicea [to appear]. Second, we study whether and how one can
prepare pure states which are already detuned from ideal fixed-point cases---with tunable correlation lengths. This turns out to be possible for large
classes of tensor network states which can be deterministically prepared using finite-depth measurement protocols. This is based on two recent
works with Rahul Sahay [arXiv:2404.17087; arXiv:2404.16753].
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Landscape of
Measurement-Prepared Tensor Networks
and
Decohered Non-Abelian Topological Order

Part I: arxiv:2404.16753 and arxiv:2404.17087
with Rahul Sahay

Part Il; to appear soon
with Pablo Sala and Jason Alicea

Ruben Verresen
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Many-Body Quantum Entanglement fromn Non-Unitarity

Part I: wavefunctions from Part Il: decohering

measurements in constant-depth topological order
(with Rahul Sahay, arxiv:2404.16753, arxiv:2404.17087) (with Pablo Sala + Jason Alicea, to appear)

What is the power of measurement What if we subject non-Abelion
for preparing quantum states? topological order to decoherence?
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Non-Abelian topological order and anyonsona
trapped-ion processor

Mohsin Igbal, Nathanan Tantivasadakarn, Ruben Verresen, Sara L. Campbell, Joan M. Dreiling, Carcline

Gaebler, Jacob Johansen, Michael Mills, Steven A. Moses, Juan M. Pino, Anthony

ry Rowe, Peter Siegfried, Russell P Stutz, Michael Foss-Feig, Ashvin Vishwanath & Henrik

| | , ] Nature 626, 505-511 (2024) | Cite this article orxiv:2305.03766
n—m| > 2
Findings:
1. remarkable robustness
Concurrent works: 2. decoherence-induced critical

Smith et al (arXiv:2404.16083), Stephens et all phOSGS and |OOp models
(arXiv:2404.16360), Zhang et al (arXiv:2405.09615)
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Many-Body Quantum Entanglement fromn Non-Unitarity

Part |: wavefunctions from

measurements in constant-depth
(with Rahul Sahay, arxiv:2404.16753, arxiv:2404.17087)

What is the power of measurement
for preparing quantum states?
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a G

RN

Briegel-Raussendorf '01; Raussendorf-Bravyi-Harrington '05;
Piroli-Styliaris-Cirac '21; RV-Tantivasadakarn-Vishwanath '21;
Tantivasadakarn-Thormgren-Vishwanath-RV "21; Lu-Lessa-Kim-
Hsieh '22; Bravyi-Kim-Kliesch-Koenig '22; ...

Concurrent works:
Smith et al (arXiv:2404.16083), Stephens et al
(arXiv:2404.16360), Zhang et al (arXiv:2405.09615)

Part ll: decohering

topological order
(with Pablo Sala + Jason Aliceq, to appear)

What if we subject non-Abelian
topological order to decoherence?

Non-Abelian topological order and anyonsona
trapped-ion processor

Mohsin Igbal, Nathanan Tantivasadakarn, Ruben Verresen, Sara L. Campbell, Joan M. Dreiling, Carcline

Dreyer &

Nature 626, 505-511 (2024) | Cite this article orxiv:2305.03766
Findings:
1. remarkable robustness
2. decoherence-induced critical
phases and loop models
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Constant-Depth Prep © Tensor Networks

Tensor Network States (with finite bond dimension)

{finite-depth circuits with forced measurement outcomey}
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Constant-Depth Prep © Tensor Networks

Tensor Network States (with finite bond dimension)

{finite-depth circuits with forced measurement outcomey}
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Constant-Depth Prep © Tensor Networks

Deterministically preparable
with finite-depth unitaries +
measurement + (non-locally-
conditioned) feedback

Tensor Network States
(= forced measurement outcome)
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Constant-Depth Prep © Tensor Networks

product
state

foric code

Tensor Network States
(= forced measurement outcome)

Briegel-Raussendorf '01; Raussendorf-Bravyi-Harrington '05; Piroli-Styliaris-Cirac '21; RV-Tantivasadakarn-Vishwanath '21;
Tantivasadakamn-Thorngren-Vishwanath-RY '21; Lu-Lessa-Kim-Hsieh '22; Bravyi-Kim-Kliesch-Koenig '22; ...
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Constant-Depth Prep © Tensor Networks

i product
; state -

Tensor Network States
(= forced measurement outcome)
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Constant-Depth Prep © Tensor Networks

Quantum Physics
[Submitted on 23 Aug 2022 (v1), last revised 20 Nov 2023 (this version, vz)]

Nishimori's cat: stable long-range entanglement from finite- ...__
depth unitaries and weak measurements

Guo-Yl Zhu, Nathanan Tantivasadakarn, Ashvin Vishwanath, Simon Trebst, Ruben Verresen
i product
state

Quantum Physics
[Submitted on 31 Oct 2022 (v1). last revised 10 Apr 2023 (this version, v2)]

Deterministic constant-depth preparation of the AKLT state on
a quantum processor using fusion measurements

Kevin C. Smith, Eleanor Crane, Nathan Wiebe, S. M. Girvin

Tensor Network States
(= forced measurement outcome)
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Outline for Part |

1. Motivating Example
Beyond-Fixed-Point SSB

2. Setup and General Formalism
Local Tensor Criteria, Resource Theorems, and Classification

3. Phenomenology of Preparable States
Trade-Off between Entanglement and Correlations
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Preparing deformed GHZ state

T(B)) o ex 5N_1Xm GHZy) = GHZx
v e (25 ) EEXEEXE

=2

We start with decoupled clusters:

@g(ﬁ)}mgeﬁx% IGHZ;) _...(GHZs) (GHZs) (GHZs) |

e Vet ol [l [0

When then "glue’ them together
with Bell pair measurements: 1) = —=(/00) + |11))

(GHZ;) (GHZ;) (GHZ3) [GHzg] GHZy

O ‘%n PP ar 7
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Preparing deformed GHZ state

How do we correct ‘'wrong’ measurement outcomes?

100) — [11))

1) = 7(\00>+ 11)) |1Z) =

1
E(\UD +1[10)) ZX) =

((
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| X) = (110) —101))

Note: |X) = X |1)

(GHzgj (GHZs) [GH23) [GHz3 GHZ3;) (GHZ3)

fo@ @l ~104d P )
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Preparing deformed GHZ state

How do we correct ‘'wrong’ measurement outcomes?

Which states can be prepared in this way?
Was it important that we used the Bell basis?
Was it important that the state has flat
entanglement specfrum?

Are there 2D examples?

(GHZs) (GHZs3) (GHZs)

5 b O da 6 |

GHZ;) (GHZs) (GHZs (GHZ3) G ¢ %

A N Y T
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Outline for Part |

2. Setup and General Formalism
Local Tensor Criteria, Resource Theorems, and Classification

3. Phenomenology of Preparable States
Trade-Off between Entanglement and Correlations
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Preparation protocol

Definition (Gluable Quantum State) We say a quantum state is gluable if it can
be deterministically prepared from:

1. a product state of entangled clusters
2. finite-range measurements in a complete basis

3. tensor-product unitary feedback (left-conditioned)

e
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Any preparable state is a matrix product state

Reshape into matrix product state (MPS)

A

: (2] | L]
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Any preparable state is a matrix product state

Reshape into matrix product state (MPS)

If we want to know whether a given
MPS is gluable, do we need to check all
gauge choices? Check all
mMmeasurement bases??
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Rahul
Resource theorem: where to look " {5

N < "

Theorem (Resource Theorem) Suppose that |¥) is a translation-invariant gluable
quantum state. Then the following are true:

1. The wavefunction |¥) has an exact matrix product state (MPS) description

2. The clusters used for prep. have to be the MPS tensors in canonical form*

3. The measurement basis is maximally entangled (equiv. V operators are unitary).

lllustration for deformed GHZ state:

[$(8)) = & 2n %~ |GHZ)

Tensors Related to Clusters Measurement Basis

J Note initial clusters We used the states

= ijk
k 5] « ) |2)
T > . X)) 1Z2X)
GiveplyIhiza tenser Maximally entangled 2-qubit

Can easily check this is Bell states

in canonical form
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Rahul )
Local tensor criterion: how to tell 5" =

Theorem (Local Tensor Criteria) A state |W) is a translation-invariant gluable
quantum state if and only if its matrix product state representation a complete

error basis of operators v that “pushes through” the MPS:

(a) (a)

V(:E"1 ﬁ/ \]/ Vo[:n +1]

!
lllustration for deformed GH/Z state:

[4(8)) = e’ 2 %~ |GHZ)

R
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Rahul

Local tensor criterion: how to tell 5" *"‘*

PJi

Theorem (Local Tensor Crlterla) A state |‘P) is a translation-invariant gluable
quantum state if and on|yif*ewaz state representation a complete

error basis of opg
This necessary and sufficient fensor

condition essentially provides a

classification of ‘gluable’” MPS!
(theorem 3 in arxiv:2404,16753) '

HustraTTor T
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Outline for Part |

3. Phenomenology of Preparable States
Trade-Off between Entanglement and Correlations
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Nonlocal correction — flat ES

Theorem (paraphrased) If all errors are corrected by string
operators (i.e., push through indefinitely in the MPS),
then the entanglement spectrum of
a semi-infinite bipartition must be flaft,

Infuition: think of measurement-based quanfum computation

lllustration for deformed GH/Z state:

¥(8)) =€’ ¥ |GHZ) — A= (%%
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Nonlocal correction — flat ES

Theorem (paraphrased) If all errors are corrected by string
operators (i.e., push through indefinitely in the MPS),
then the entanglement spectrum of
a semi-infinite bipartition must be flaft,

Despite this constraining property, still rich landscape of such states:

Example of complete
classification for case x=2:

ot € {1,X,Y,2}
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Nonlocal correction — flat ES

Theorem (paraphrased) If all errors are corrected by string
operators (i.e., push through indefinitely in the MPS),
then the entanglement spectrum of
a semi-infinite bipartition must be flaft,

Despite this constraining property, still rich landscape of such states:

Az
Any minimally-entangled

Example of complete abelian SPT state is gluable!

classification for case x=2:

ot € {1,X,Y,2}
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Nonlocal correction — flat ES

Theorem (paraphrased) If all errors are corrected by string
operators (i.e., push through indefinitely in the MPS),
then the entanglement spectrum of
a semi-infinite bipartition must be flaft,

Infuition: think of measurement-based quanfum computation

lllustration for deformed GH/Z state:

¥(8)) =€’ ¥ |GHZ) — A= (%%
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Rahul )
Local correction — constrains correlation ~ *" {2

a = arctanh(e”%%)

Theorem (Local Errors Constrain Correlations) If [¥) is gluable and there exists a
measurement error that can be locally corrected, then there exists an operator
with zero correlation length.
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[eluster)———

Summary for Part |

By focusing on measurement-only circuits:

4 Key Results and Ideas

— Classification of preparable quantum states in this setting

—"Resource” theorem that almost fully constrains the
preparation protocol for creating a quantum state

— Phenomenological constraints on the properties of
preparable states — trade-off b/w preparable correlations
and entanglement

~

|AKLT)
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No-go theorem

Putting the above results together:

Theorem (No-Go Theorem) If |¥) has a non-flat entanglement

spectrum and no zero correlation length operators, it is not gluable.

e-g-, |w()8)> — 85 Zn Xneﬁ Zn ZnZn—|—1 ’_|_>®N

“We can create inferesting enfanglement and
interesting correlation functions,
butf not af the same fime!”
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Part Il (briefly)

Decohering topological order can lead to

mixed states with interesting phase diagrams
(Fan-Bao-Altman-Vishwanath '23; Bao-Fan-Vishwanath-Altman '23; Li-Jian-Xu '23; Wang-Wu-Wang
'23; Chen-Grover '23; Li-Mong '24; Lu '24; Sohal-Prem '24; Sang-Hsieh 24; Ellison-Ceng '24; Chen-
Grove '24; Li-Lee-Yoshida '24; Lessa-Ma-Zhang-Cheg-Wang 24, ... and more!l)

(Kitacev 1997)

=-]1 - e-anyon =-1 - mM-anyon

Which statistical mechanical models (if any)
might replace the role of the Ising model
in the case of non-Abelian topological order?
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O(1) loop model describing toric code decoherence

Decohering toric code with e.g. X-noise leads to

p) o< P Ei XX TC) 4 @ |TC)

[ =]

(plp) o< > tanh(23)"!

loops v

SV,
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O(1) loop model describing toric code decoherence

Decohering toric code with e.g. X-noise leads to

p) o< P Ei XX TC) 4 @ |TC)
Special case of

/ /
/ 6’6 /
/
O(n) loop models:

(plp) o< > tanh(23)"! S o

loops v

loops ~

where C.is number of components
/ B
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Simple Model for Non-Abelian Topological Order

D, fopological order for qubits on kagome lattice

H:—ZAS—ZBt
S t

., / i

/\
\//\/\/

Yoshida, PRB (2016)

States experimentally
realized in Igbal et al,
arxiv:2305.03766

Ground state: A, = B; =1
Anyons: Ag = —1 s ‘e-anyon’ with d=1
By = -1 is ‘m-anyon’ with d=2

mrXmr=1+ep+ 4+ ep
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Deforming D, topological order

| \‘:'/ N9 / ‘ N/
,-"o;*.—.—\.—q./ \ /
N 4 ///\/\\/
c;./_\._./_\q. 4 \\ N\ / "
N ¥ Y B

As warm-up for decoherence, let’s deform the wavefunction

$(8)) = e >ren % |Dy)

— fluctuates abelian anyon with d=1
— O(1) loop model
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Deforming D, topological order

N/ N\ _/ /‘ N/

J_,“s_._\._q‘/ \ /
E \./ \ \./ /// \ 4 \\ /
;;./_\._./_\.;. P4 \\ / \ / \
NS \.3./ N\ / \ /

As warm-up for decoherence, let’s deform the wavefunction

4(8)) = e2 ZrernXr |D,)

— fluctuates non-abelian anyon with d=2

W(B) |9(B)) o< Y tanh(B)M (Dy| [ | X1 1Ds)

ley
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Deforming D, topological order

|77b(/8)> — e% ZTER K

— fluctuates non-abelian anyon with d=2

an il
WO RE) « 3 (SR2) 2

Phase diagram:

Dy)

robust D, topological order BKT
—> [
o0

Intuition: condensing m_without e_or e_is difficult!

(see Chen-Grover arxiv:2403.06553 for analogue with abelian fermions)
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Deforming D, topological order  °

— fluctuates both abelion and non-abelian anyons

lo

Sala

” B Bg
W(B)) = e F TrerXrt % Tien Zo+F Lyea 7o | D,y)

— coupled O(1) and O(2) loop models with branching

Rewrite as local stat. mech. model
and do Monte Carlo —»

(similar result for {(p|p) )

Sk

T.C. Trivial
2-v3
Dy
0 0.5
tanh(5%)
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Deforming and decohering Ising anyons

We also studied non-Abelian phase of Kitaev honeycomb model

— we obtain Z ¢l W(y)  where Wis a free-fermion determinant

fy
W(y) ~rPin® 4 ...
Kk =0.20 1.8
T 0.81!
1.6
1073
_ 107 TIEV2ie o ® @ o o o o
=
1077
109 1.2
1072 ™~ 1.0
8 10 12 14 16 18 20 22

0 5 10 15 20 25 30

Length of loop £
Length of loop £
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Jason

Aliceo Summary for Part I

O() loop and net models natural for deformed and
decohered non-Abelian topological order

Robust phases due to difficulty
of condensing non-abelions

Can result in phases with algebraic correlations!

@l THE UNIVERSITY OF

& CHICAGO Starting my group at UChicago
in the Fall of 2024

Group website: www.verresengroup.com
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Deforming and decohering Ising anyons

We also studied non-Abelian phase of Kitaev honeycomb model

— we obtain Z ¢l W(y)  where Wis a free-fermion determinant
Y

For [W(7v)| we see transition consistent with O(v2) loop model

1.01 »
— 2= ¢

0.7 L2 =(6)
~ L2=(12)2 0.9
d 06 [T LZ = (13)2
2 0.5
- == Binder C‘; 0.7
104
~N
=03 L9

0.2 0:5

05 06 07 08 09 1.0 0.75 0.80 0.85 0.90 0.95
Error rate r(p) Error rate r(p)
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Deforming D, topological order  °

— fluctuates both abelion and non-abelian anyons

lo

Sala

” B Bg
W(B)) = e F TrerXrt % Tien Zo+F Lyea 7o | D,y)

— coupled O(1) and O(2) loop models with branching

Rewrite as local stat. mech. model
and do Monte Carlo —»

(similar result for {(p|p) )

Sk

T.C. Trivial
2-v3
Dy
0 0.5
tanh(5%)
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