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Abstract: We discuss families of approximate quantum error correcting codes which arise as the nearly-degenerate ground states of certain quantum
many-body Hamiltonians composed of non-commuting terms. For exact codes, the conditions for error correction can be formulated in terms of the
vanishing of atwo-sided mutual information in alow-temperature thermofield double state. We consider a notion of distance for approximate codes
obtained by demanding that this mutual information instead be small, and we evaluate this mutual information for the Sachdev-Y e-Kitaev (SYK)
model and for a family of low-rank SYK models. After an extrapolation to nearly zero temperature, we find that both kinds of models produce
fermionic codes with constant rate as the number, N, of fermions goesto infinity. For SYK, the distance scales as N*1/2, and for low-rank SYK, the
distance can be arbitrarily close to linear scaling, e.g. N*.99, while maintaining a constant rate. We also consider an analog of the no low-energy
trivial states property and show that these models do have trivial low-energy states in the sense of adiabatic continuity. We discuss a holographic
model of these codes in which the large code distance is a consequence of the emergence of a long wormhole geometry in a ssmple model of
guantum gravity
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Ground states as an approximate code?

N=2 SUSY SYK

(i|0]5) = 6:(O)

[S unpublished, 5ish years ago]
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Today: SYK, JT, and codes

* All low-weight stabilizer codes (a big class) can be viewed as
degenerate ground spaces of special local* Hamiltonians (*few-body)

* Other examples of interesting ground spaces?
* Fractional quantum Hall states
* Certain kinds of frustrated magnets
* SYK, SUSY SYK
* Extremal black holes

* |f we consider such sets of states as approximate codes, what are
their properties?

ik With Greg Bentsen and Phuc Nguyen: [Nguyen-Bentsen-S 2310.07770] *
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Review: toric code

>

Hamiltonian: Logical operators:
* A sum of commuting terms * Non-contractible curves

* Code space = ground space * Big torus = big protection
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Review: Sachdev-Ye-Kitaev model
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Review: SYK physics S (thermal)

\ N to infinity, then T to zero:

Non-zero “zero temperature”
entropy density

T

J

The holographic description of SYK emerges at low temperature, T << J,
where it can be equally well described by matter fields coupled to 2d dilaton
gravity (Jackiw-Teitelboim “JT”); this is the regime where our approximate
ground space code resides
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Why?

* I’'m interested in spin glasses and mean-field classical spin glasses
have “TAP states” which function like classical codewords; is there a

guantum generalization?

* I'm interested in holography and SYK provides a simple holographic
model of quantum gravity; understanding these ground states
amounts to understanding black hole microstates; our work also
touches on bulk reconstruction in the quantum fluctuating regime

* I’'m also interested in the field of Hamiltonian complexity, including
relations between codes and robust entanglement; we of course
would also be delighted to find new useful quantum codes
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Back to the story ...

Let’s define the code space as some band of nearly degenerate
approximate ground states in a single instance of SYK

e Rate of the code = ground state entropy per particle

For stabilizer codes, we can think of the maximally mixed state on the
code as one side of a zero temperature “thermofield double” (TFD)
state; we’ll use a very low temperature TFD for the SYK calculation

|TFD,T)=Z B |En)L|En)dr
A\
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What to calculate?

Let’s define the code space as some band of nearly degenerate
approximate ground states in a single instance of SYK

* Rate of the code = ground state entropy per particle
e Distance of the code = ???

What else might we want to know?

* Encoding?
* Decoding?
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O U r n Oth n Of d ISta n Ce Stabilizer Code: This Work:
Hgea =) ha Hgyk = Y _ha

* For an exact code, the standard [hayhs] = 0 (ha, hy] = O(1/N)
Knill-Laflamme conditions for error Logical subspace = Logical subspace =
correction can be reformulated in SXactoring space 2DPIRX: IotnG Shace
terms of a vanishing two-sided SYKy
mutual information A EIED) e

* For an approximate code, we will
compute the same mutual
information and use its smallness e e
to provide a notion of distance*

Code Distance:

_[([‘([4.:‘\'/;) XX

. N2A
*[in progress] compare to other recent works

[Yi-Ye-Gottesman-Liu], [Zheng-He-Lee] = § (K L) + S (N R) -5 (K N R)
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Let’s think about a higher dimensional

Holographic intuition  holographic setup and the powerful

Ryu-Takayanagi formula for entropy

R (area of minimal "surface")
S =
4G
S(K;): red
S(NR): blue

S(K;Ng): red+blue OR green

I(K:Ng) = S(K;,) + S(Ng) — S(KNg)

TFD is dual to a geometry with spatial
connectivity between L and R, a wormhole!
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Aside on non-Abelian gauge codes

* We can arrange our wormhole geometry
so that the mutual information is zero even L
for quite big L regions!

* Are we getting awesome codes?

* Not quite: There are small corrections to
the RT calculation coming from matter that
give non-zero mutual information

* Maybe yes: One can nevertheless design
codes that use continuous non-Abelian
gauge invariance to protect information;
these can even be thermally long-lived

[early steps: Cao-Cheng-S 2211.08448]
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Main calculation I(K.:Ng) = S(K) + S(Ng) — S(K.Ng)

e Qutline of the calculation:
* Prepare TFD state using Euclidean path integral
* Compute the individual entropy terms using replica trick
* Combine the terms and extrapolate to the “ground space”, T~1/N

* But there are many subtleties:
» Saddle point calculation becomes uncontrolled if T is too small
* Saddle points can shift depending on K if K is too large
* Renyi entropies are easier to access than von Neumann entropies

* We make some non-rigorous arguments that we can ignore shifts of
saddle due to K and breakdown of the saddle point at low T
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The main technical work of our paper is doing this calculation;
we did it both directly in SYK and using the dual gravity picture

I’ll discuss the gravity picture here
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B 472 —dt? + do?

2
Gravitational picture a3 B2 sinh? 222
Consider a holographic model: gy = o
o JT gravity + X
* N bulk fields (dimension = mass)
X, Xr
We’ll discuss correlations and a model
of entanglement of subsets of fermions
(this is a more complex low-d version O=¢

of RT) [QGLabll, Chandrasekaran-
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Entropy has two pieces:
* Dilaton contribution (similar to RT, order N)
e Bulk entanglement contribution (large due to N bulk fields)

For example, suppose we want to g =
compute entropy of entire left:
* Dilaton value at
* Bulk entanglement on X,
il
* Minimize this combination over the ?
location of
O=¢€

We also give a new perspective on this
formula via dimensional reduction of a

magnetic black hole [Bentsen-Nguyen-5]
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Co rrelations G (1) = thermal Green function

(A)

1/2
G pui (K %) ~ G(B12) G, 1 (. ¥ ~ [G(B/2)]
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\Y/ utua | infOI’mati on Entropy = Dilaton + Bulk entanglement

(A) (B) (C)

I(Kp : Ng): (A) S(R), (B) S(KL), (C) S(KLUR).



Limit of a long wormhole

irsa: 24050039

single interval entropies +

bulk mutual informati
(B)

X, K Xe

1/2
Gk (O 3% ) ~ [G(B/2)]

on

2
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Final result and comments

* For general beta, the result is I(K;: R)~K/(?%2; if we now take the
delicate limit § = O(N), we get I~K /N?4

« Hence, a subset of eN22 fermions has no more than € information
about the code space

* We did a purely SYK calculation giving the same result

* For SYK, 2A < %so the distance is never linear in N; for “low-rank
SYK” [Kim-Cao-Altman] the dimension is tunable and the distance can
be arbitrarily close to linear, e.g. 2A~.99 while maintaining a non-
vanishing rate
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Summary and outlook

* Summary: approximate ground spaces as codes, rate is ground state
entropy, distance obtained from a two-sided mutual information

* Holographic perspective: large (emergent) physical distance = large
code distance

* If we had a stabilizer code with these properties, it would be a
fantastic; for SYK, it’s not clear if these codes are useful

* Many questions remain ...
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Decoding and encoding?

H=),h,;h, =all terms
including fermion a

Different h, nearly commute

and h, jumps in expectation value
when fermion a is applied (error),
but there are large fluctuations;
decoding is plausibly hard from
black hole perspective; also related
to bulk reconstruction with strong
quantum fluctuations
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NLTS-ish?

* Also interesting to compare to recent “good QLDPC” codes [Panteleev-
Kalachey, ...]; one thing those codes have [Anshu-Breuckmann-Nirkhe] is a
robust kind of entanglement related to the absence of “trivial low-energy
states” (NLTS) [Freedman-Hastings]

* A system has NLTS if all low energy states below a certain energy density
are significantly entangled (no constant depth circuit)

* A morally similar criterion: replace constant depth circuit with time
evolution for a constant time (not clearly the same for mean-field models)

* By invoking the Maldacena-Qi eternal wormhole, we show that our SYK
codes DO NOT have this NLTS-like property; we can prepare states of
arbitrarily low but fixed (with N) energy density [Bentsen-Nguyen-S]; this
also dovetails nicely with holographic complexity conjectures
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Our methods above should generalize
N=2 SUSY case and one can study this system in exact
diagonalization:

We now have complex
fermions with a conserved
U(1) and supersymmetry with
a complex supercharge

Q= Z L CapcPa¥p e
a,b,c
H={Q,Q0"}

Ground state degeneracy is
now exact

||
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Limit of a long wormhole

(C) single interval entropies +
bulk mutual information

2

1/2
Gk (O 3% ) ~ [G(B/2)]
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Final result and comments

* For general beta, the result is I(K;: R)~K/(?%2; if we now take the
delicate limit § = O(N), we get I~K /N?4

« Hence, a subset of eN22 fermions has no more than € information
about the code space

* We did a purely SYK calculation giving the same result

* For SYK, 2A < %so the distance is never linear in N; for “low-rank
SYK” [Kim-Cao-Altman] the dimension is tunable and the distance can
be arbitrarily close to linear, e.g. 2A~.99 while maintaining a non-
vanishing rate
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Let’s think about a higher dimensional

Holographic intuition  holographic setup and the powerful

Ryu-Takayanagi formula for entropy

R (area of minimal "surface")
S =
4G
S(K.): red
S(NR): blue

S(K;Ng): red+blue OR green

I(K:Ng) = S(K,) + S(Ng) — S(KNg)

TFD is dual to a geometry with spatial
connectivity between L and R, a wormhole!
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