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Abstract: The steady states of dynamical processes can exhibit stable nontrivial phases, which can also serve as fault-tolerant classical or quantum
memories. For Markovian quantum (classical) dynamics, these steady states are extremal eigenvectors of the non-Hermitian operators that generate
the dynamics, i.e., quantum channels (Markov chains). However, since these operators are non-Hermitian, their spectra are an unreliable guide to
dynamical relaxation timescales or to stability against perturbations. We propose an aternative dynamical criterion for a steady state to be in a stable
phase, which we name uniformity: informally, our criterion amounts to requiring that, under sufficiently small local perturbations of the dynamics,
the unperturbed and perturbed steady states are related to one another by a finite-time dissipative evolution. We show that this criterion implies
many of the properties one would want from any reasonable definition of a phase. We prove that uniformity is satisfied in a canonical classical
cellular automaton, and provide numerical evidence that the gap determines the relaxation rate between nearby steady states in the same phase, a
situation we conjecture holds generically whenever uniformity is satisfied. We further conjecture some sufficient conditions for a channel to exhibit
uniformity and therefore stability.
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nonequilibrium steady states

« System coupled to very large environment e

« Expected to reach a steady state (possibly
non-unique) if you wait long enough

» What are the properties of this state?

batt sys bath 2

* Order of limits for steady state

« First take bath size to infinity

« Take system size and time to infinity as
L*/t = O(1) for some z

« Does this order of limits give rise to distinct
phases?
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stable steady-state phases exist...

 In the classical context: fault-tolerant cellular automata (Toom, Gacs, ...)

ordered steady states

il g
ent M<0

.....

« Some have distinctively quantum orders (e.g., error correcting codes)
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two basic questions

« Hard question: proving that a given steady-state phase is stable to arbitrary local perturbations
» Concrete results in math literature for certain dynamical systems

« Several concrete examples with nonperturbative instabilities

« Easier question (this talk): What is the “landscape” of open systems like? What does it mean
to be in a phase?
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outhne

* Phases of gapped zero-temperature systems: quasi-adiabatic continuation and its implications

« Case study of a nonequilibrium system: biased random walk
« Essential role of non-Hermiticity
* Spectra and pseudospectra
» What the spectrum controls
« “Uniformity” criterion for open-system phases
« Consequences for correlation functions, response to local perturbations, ...

+ Example: Stavskaya automaton
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gapped zero-temperature systems
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gapped phases of ground states

* Gapped regions: finitely many ground states, degenerate and
separated by O(1) gap from all other states as size L. — oo

» Standard properties of ground states in gapped regions:
« area-law entanglement
+ analytic evolution of expectation values and few-point correlators

gapped region 2
= correlation functions decay exponentially to their asymptotic values

parameter 2

+ if one point in a gapped phase has long-range order, so does every
other point

gapless

gapped region

region

» “local perturbations perturb locally” (LPPL): perturbing a gapped 1

ground state at point x has a weak effect at distant point y,

30W) ol

H = Hy + V(x)0), —

parameter 1

* What have these got to do with one another?
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Hastings (+Wen)

gapped paths and finite-depth circuits

* Move along a gapped path (i.e., gap always stays open)

» By adiabatic theorem, if we move slow enough (relative to

: . d path
the gap) we remain close to* the instantaneous ground state bl

« Gap remains open throughout: there is a finite-time
evolution that connects two ground states along the path

gapped region 2

» By Lieb-Robinson theorem, this finite-time evolution does
not change correlations at asymptotically large distances:
there is a light cone

parameter 2

gapless

« Can Trotterize the finite-time evolution, getting that gapped region

region
ly) ~ Uly) !

where Uis a finite-depth (local) unitary circuit (FDLU) parameter 1

* Wavefunctions fall into equivalence classes under FDLU
equivalence (FDLU is an equivalence relation)
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FDLU and long-range order

P

(w, | OO0) |y = (y, | UTOX)OO)U [y} = (wy | O)OO0) |y,y £

where O(x) = UTO(x)U . .

Local operator with LRO in |y,) means some
fattened local operator with LRO in | yz,)

I
Long-range order is either present (or not) n
throughout a gapped phase

Generally Tr(O(x)UTO(x)U) = O(1) so the
same correlator picks up LRO throughout a
phase (but this can fail at some points)
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“local perturbations perturb locally”

« Start with a gapped Hamiltonian H, perturb it with
a weak local perturbation AO(x) near x

* Assume gap remains open for all
HA)=H+10kx), 0<A <4

« This means ground states of H(0) and H(A) are
related by FDLU consisting of:

Gates from H(0) acting everywhere

Perturbations acting at x

* These only perturb the ground state within the
FDLU light cone

» Farther away, expectation values are unaffected

* LPPL can also be adapted to finite temperature
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quantum channels

» System interacts with environment in reference state

» After interaction, environment qubit is lost/traced over

» “Superoperator”: takes (system) density matrices to density
matrices &(p) = p’ ‘

* Schrodinger (bottom-to-top) and Heisenberg (top-to-bottom) m | { ,\
versions of a channel have different properties U E [ i
{
» Schrddinger evolution is trace-preserving é O

Heisenberg evolution is unital (maps identity to identity) n

» Can write states as “kets” (vectors in the Hilbert space) and
observables as “bras” (vectors in the dual space)

« Expectation values are“matrix elements” (0 | & | p)
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unital property in the heisenberg picture

In vector notation, (| & = ([ |
* In Schrodinger picture, corresponds to trace preservation

* In Heisenberg picture, corresponds to unital property: “it
doesn’t matter when you don’t perturb the system”

* Note that the corresponding property is not true acting to the
right, & | 1) # |[) in general
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fat-line notation

« Fat lines carry density matrices,
a channel is a superoperator on density matrices

« Observables are vectors acting from the top, identity [\ 5 ?

« Unital property:
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circuits composed of quantum channels

« Lieb-Robinson arguments carry over more or less directly from unitary systems

unital property

—_——

repeating
unit
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spectra of quantum channels

We are interested in steady states, &(p) = p

* In general, any initial state evolved to long times can be written as
)= pos+ D, o,

where o, are traceless Hermitian matrices

gapped region 2

parameter 2

gapped
« Apparent characteristic timescale 7. ~ 1/|log 4, | region

1

« Spectrally gapped regions: t; stays finite in large-system limit

parameter 1

* Do these behave like zero-temperature gapped phases?

* Instead of working with channel, could work with continuous time
version, Lindbladian, s.t. d,p = Z(p)
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ground-state phases vs. steady-state phases

parameter 2

gapped
region

1

Extremal eigenvector of Hermitian matrix H

If gap stays open there is a finite-time evolution that
remains in the instantaneous ground state

Lieb-Robinson: finite-time evolution cannot form long-
range correlations

Inverse of finite-time evolution is finite-time evolution,
S0 cannot destroy long-range correlations either
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gapped region 2

parameter 1

Extremal eigenvector of non-Hermitian matrix &

Not obvious that a system would remain in the steady
state along a gapped path

Lieb-Robinson: finite-time evolution cannot form long-
range correlations

Inverse of a channel is not a channel, so finite-time
evolution can destroy long-range correlations
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two-way equivalence

fast

ﬁ
© ® >

toric code threshold density of errors

B

slow

« Proposal (Coser + Perez-Garcia '19): if p, = &(p;) and p; = A£(p,) under FDLC, then we say
the two states are in the same phase

» At the threshold the recovery map ceases to be an FDLC (Sang + Hsieh '24)

* The below-threshold toric code is not the steady state of any obvious parent channel: what
kinds of mixed states have parent channels?

» “Standard” active error correction requires nonlocal classical processing, unclear how to work
this into our concept of steady-state phases
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biased random walk
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a simple nonequilibrium phase transition in 1d

YL > YR
stuck to L wall

YL <7Yr
stuck to R wall

reflecting
wall

« Master equation (in bulk): p; = yrPi_1 + 71.Pit1 — (rr + 700
« Master equation (at origin): py = — ¥y, po + 7.P1

» For these b.c.’s, the spectrum is gapped whenever the rates are asymmetric
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position at time t
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totally asymmetrie limit

Turn off rightward hopping, work in discrete time, arrive at a Markov chain:

(

\ A=1,v=(1,00,0,0)

My = Av

) \ 1=0,v=(-1,10,00)

This matrix (regardless of size) has only two eigenvalues (1,0) and only two eigenvectors
(i.e., it contains a giant Jordan block)

<

I
& S & =
& & e —
cCoo RO
S &S &
=R

Gapped unique ground state! But clearly a relaxation time that diverges with system size

Relaxation of generic initial states is not controlled by spectrum but by Jordan block structure
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away from the hhmit

» Matrix is generally diagonalizable but has nearly parallel

; : eigenvectors
eigenvectors (all localized near left end) g

* Spectrum remains gapped

« Initial states near right end have coefficients ~ et

can be written as

w= Zi Aety,
4

* Under time evolution these go to initial state

w(f) = ZE/II_ECL—»&;IW

in eigenbasis,

at wrong end

« Non-steady-state coeffs become small when L ~ ¢

o« L — 00,t — oo limits do not commute: spectrum only controls
relaxation if you take the long-time limit first!
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pseudospectrum

« Eigenvalues are poles of resolvent Ry,(z) = Q(zl — M )10
where Q is a projector that removes the steady state

« Define e-pseudospectrum in terms of “large resolvent,”

Se={z € C|lIRyll, = 1/€}

resolvent norm

* Pseudospectrum contains info about relaxation of generic
initial states (Trefethen...)

« In the totally asymmetric random walk, ||R(z)|| ~ 1/(z — 1)*

« Taking L — oo first, the entire interval [0,1] lies in the
pseudospectrum for any € so it is gapless
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boundary-condition dependence

Resolvent also controls perturbation theory: regions of large resolvent are susceptible

Instability: connect opposite ends of the system, creating a ring

On aring the steady state is current carrying and there is no density pile-up at the left end

Lesson 1: connecting opposite ends of the Jordan block creates an instability

Lesson 2: LPPL fails on the ring — a local perturbation can collapse gap, destroy steady state
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other cellular automata

« All deterministic cellular automata are Markov chains with eigenvalues that live either on the
unit circle or at zero: all either gapped or degenerate

* Many have long relaxation times and nontrivial dynamics: again, due to Jordan block structure
« Jordan blocks in configuration space

« A natural conjecture:
« Automata are stable when perturbations that connect the two ends of the block are illegal

« Why might they be illegal? E.g., because of locality constraints

Pirsa: 24050037 Page 25/38



steady state phases of quantum channels
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general picture

« Nontrivial gapped phase needs:
* Gap setting some characteristic O(1) relaxation timescale

« Initial states that take O(L) time to relax

 Informal proposal to put these together:

« Long relaxation timescale = large emergent Jordan blocks, gapless pseudospectrum = instability to fully general
perturbations

* Local perturbations relax on timescale set by gap
» Perturbing dynamics from a steady state ~ starting with a locally perturbed steady state of the new dynamics

« Short channels relating steady states = steady states of unperturbed and perturbed channels are very similar
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instability to general perturbations

* A nontrivial steady state is one that you cannot reach
from a trivial one at finite depth 2o

« Take a channel & with a nontrivial steady state p_,

« Add a perturbation acting as

Pp=(-¢p+ep, Lk

where p,, is your favorite product density matrix

« Forany € > 0 in the thermodynamic limit, the steady P oo
state of &P, is trivial, so & is unstable

« But clearly this perturbation is highly nonlocal
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uniformity condition

This is a proposal for what it means for an open set of
parameters D to be in a stable phase:

The (0, 7)-uniformity condition means 3(6 > 0,7 > 0) such that
D can be finitely covered with balls of size & with the property:

Given a channel & with steady state p in a ball B, every other channel &' € B
has a steady state p’ such that

|0 {&"|p) — |p)}| < O(e™"%) for any local operator

« NB 7 is size-independent and uniform throughout D.

* Primes are counterintuitively placed: we are saying “every
steady state is downstream of steady states elsewhere in B”

« Aphase is the closure of uniform regions for all (6, 7)

Allows for moving within the phase using finite-depth
channels
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instability to general perturbations

* A nontrivial steady state is one that you cannot reach
from a trivial one at finite depth 2o

« Take a channel & with a nontrivial steady state p_,

« Add a perturbation acting as

Pp=(1-¢p+ep, L

where p,, is your favorite product density matrix

« Forany € > 0 in the thermodynamic limit, the steady P oo
state of &P, is trivial, so & is unstable

« But clearly this perturbation is highly nonlocal
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uniformity condition

This is a proposal for what it means for an open set of
parameters D to be in a stable phase:

The (0, 7)-uniformity condition means 3(6 > 0,7 > 0) such that
D can be finitely covered with balls of size & with the property:

Given a channel & with steady state p in a ball B, every other channel &' € B
has a steady state p’ such that

|0 {&"|p) — |p)}| < O(e™"7) for any local operator

« NB 7 is size-independent and uniform throughout D.

* Primes are counterintuitively placed: we are saying “every
steady state is downstream of steady states elsewhere in B”

« Aphase is the closure of uniform regions for all (6, 7)

Allows for moving within the phase using finite-depth
channels

Pirsa: 24050037 Page 31/38



why would this be an equivalence!

* One answer: we defined it that way (but why is this sensible?)
» Defined w.r.t. local modifications of the dynamics

« Consider adding a weak perturbation P, to a channel & with a
nontrivial steady state

« Evenif P. destroys the steady state, it must take a long time to
do so: fortimes <K 1/¢e, P&, ~ &,

* If we had a nontrivial-trivial phase transition, steady states near
the phase boundary would relax slowly when quenched weakly
across the transition in either direction
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implications of uniformity

Direct consequences of finite depth channel + light cone:
* Analyticity of correlations inside a phase
* Local perturbations perturb locally

* If one point in the phase has long-range order then so does every
other point

Spectral implication of uniformity: perturbations have controlled
matrix elements between steady state and local observable:

| (0| (RyV)" | pg) | < e for some ¢
where Ry = Q(l — %0)‘]Q, resolvent of unperturbed channel

Deriving these results from uniformity follows standard Hastings logic
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uniformity and the spectral gap

Two conceptually distinct questions:

« At what rate do steady states in the same phase reach each other, in
the thermodynamic limit?

* What is the spectral gap?
We conjecture that these coincide

Difficult to prove without additional assumptions on the
spectrum of the channel

Numerics supports this identification (in Stavskaya’s
model, where uniformity is known to hold)
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stavskaya’s automaton

@ 068 C

t coeCe

« One classical bit at each site, one-dimensional geometry . 1 ({ . t;
_ : _ oXeX X Xe.

. Two-site update rule: b, — min(b,, b ;) applied 00 e
probabilistically 0HOS0

« Absent errors, two steady states: all-0, all-1

1 ——
o All-1 state is unstable to errors of type 1 — 0 ol L = 8000
. Consider maximally biased errors, 0 — 1 at some rate & S -
mixed in with Stavskaya dynamics: all-1 state is an exact ~ 04 b o
steady state by construction -
02
0
. Claim: there’s a phase transition at £, > (0 below which o Lot PN RO
there is another steady state (to which almost all initial 000 001 1020030

states are absorbed)
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uniformity from erosion of errors

2 D)

(Y (
A

e

« In Stavskaya, unperturbed dynamics erodes errors 7=000000Q00Q QY

oNeNoXoNoX XoNoX X X

 When there are multiple local steady states, linear erosion is \ oo : ! E

the best you can do QO ® e

CNoX Neo

» Naive conjecture: erosion is a sufficient condition for stability 0000
o=1@®cSO

 This criterion misses nonperturbative instabilities: roughly, the St
growth of the erroneous region can be

OR =—1+¢f(R)

« When the surface area for growth is large, very large errors
can grow instead of shrinking

* Less naive conjecture: nonperturbative instability requires a
finite entropy of distinct steady state configurations
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summary/outlook

« Physical picture of nontrivial steady states of many-body channels/Lindbladians
« Cannot be quickly reached from trivial state because of emergent large Jordan blocks

« Can be quickly reached from other states in the same phase (on timescale set by the gap): this assumption plus
Lieb-Robinson implies various familiar properties of a gapped phase

» Evades non-invertibility of channels by defining a local equivalence relation
* Open questions/issues:
» Establishing uniformity for higher-dimensional models
» Counterexamples with stable steady states violating uniformity, e.g., symmetric diffusion

» Efficiently checkable criteria for uniformity

* How does active error correction fit into this framework?
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uniformity from erosion of errors

« In Stavskaya, unperturbed dynamics erodes errors 7=000000Q00Q QOO0
oNeXoNoXo¥ YoXeX X X No

* When there are multiple local steady states, linear erosion is ‘ o - : : ,Ci -
the best you can do 00®®0
CYeX XeoXe

» Naive conjecture: erosion is a sufficient condition for stability 00000
o=1@®cS50b

 This criterion misses nonperturbative instabilities: roughly, the ;=fau1t
growth of the erroneous region can be

OR =—1+¢f(R)

« When the surface area for growth is large, very large errors
can grow instead of shrinking

* Less naive conjecture: nonperturbative instability requires a
finite entropy of distinct steady state configurations
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