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Abstract: Certifying that an n-qubit state synthesized in the lab is close to the target state is a fundamental task in quantum information science.
However, existing rigorous protocols either require deep quantum circuits or exponentially many single-qubit measurements. In this work, we prove
that amost all n-qubit target states, including those with exponential circuit complexity, can be certified from only O(n"2) single-qubit
measurements. This result is established by a new technique that relates certification to the mixing time of a random walk. Our protocol has
applications for benchmarking quantum systems, for optimizing quantum circuits to generate a desired target state, and for learning and verifying
neural networks, tensor networks, and various other representations of quantum states using only single-qubit measurements. We show that such
verified representations can be used to efficiently predict highly non-local properties that would otherwise require an exponential number of
measurements. We demonstrate these applications in numerical experiments with up to 120 qubits, and observe advantage over existing methods
such as cross-entropy benchmarking (XEB).
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Motivation

® Quantum systems with are pivotal in

qguantum information science.
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Motivation

® Quantum systems with are pivotal in

qguantum information science.

® To understand if we have created the desired quantum system in

the lab, we need to perform certification.
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What is Certification?

® We have a desired n-qubit state |i/), which is our target state.
® We have an n-qubit state p created in the experimental lab.

® Task: Test if p is close to or not from data?

(Cwrlplyr) is close to 1)

® A fundamental task in data science for quantum.
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Motivation

® Many techniques based on statistics & learning theory have been

proposed for performing certification.

® However, it remains experimentally challenging to certify highly-

entangled quantum many-body systems.
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What is Certification?

® We have a desired n-qubit state /), :NhiCh is our target state.

® We have an n-qubit state p created in the experimental lab.

® Task: Test if o is close to or not from data?

((yrlpliy) is close to 1)

® A fundamental task in data science for quantum.
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How to Certify?

® Approach 1: Random Clifford measurements (classical shadow)

AN

Single-qubit
Measurement

v W)
andom
Clifford Circuit

Quantum state
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How to Certify?

® Approach 1: Random Clifford measurements (classical shadow)

® Advantage:

Only needs depth-n random Clifford circuits on p

® Challenge:
Implementing depth-n random Clifford circuits

is still experimentally challenging.
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How to Certify?

® Approach 2: Random Pauli measurements (classical shadow)

® Advantage:

Only needs single-qubit measurements on p

® Challenge:
Requires exp(n) measurements for most target

especially when is highly entangled.
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How to Certify?

® Approach 3: Cross-entropy benchmark (XEB)

oy
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Quantum state Single-qubit

Measurement
(all Z bases)
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How to Certify?

® Approach 3: Cross-entropy benchmark (XEB)

® Advantage:

Only needs single-qubit measurements (Z-basis) on p

® Challenge:

Does not rigorously address the certification task.

o can be far from despite perfect XEB score.
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Existing Challenges

® All existing certification protocols either
a. Require deep quantum circuits before measuremefits
b. Use exponentially many measurements
c. Apply only for low-entanglement state

d. Lack rigorous guarantees
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Question

Can we rigorously certify almost all quantum states

from performing few single-qubit measurements?
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Outline

® Theorem
e Protocol

® Applications
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Certification

B e -

For almost all n-qubit state /), we can certify that p is close

to using only O(n?) single-qubit measurements.

\ _

® The certification procedure applies to any .

e O(n?) is enough even when has exp(n) circuit complexity.
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Relaxation Time

® Consider an n-qubit target state
® Choose a basis |b), where b € {0,1}" is a bitstring.

o Let (b) = | (b|y) |* be the measurement distribution.

100 110

Boolean 000
Hypercube
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Relaxation Time

o Let 7(b) = | (b|w)|* be the measurement distribution.

® Consider a random walk on n-bit Boolean hypercube.

100 110

v

Boolean 00Gi¥
Hypercube
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Relaxation Time

® Let 7(b) = | (b|w)|* be the measurement distribution.

® Let 7 be the time the random talk takes to relax to stationary .
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Measurement Protocol

® Pick a random qubit x. Measure x in random X/Y/Z basis.

| A
AUX/Y/Z

Al A
Quantum state Single-qubit

Measurement
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Relaxation Time

® Consider an n-qubit target state
® Choose a basis |b), where b € {0,1}" is a bitstring.

o Let 7(b) = | (b|y) |* be the measurement distribution.

100 110

Boolean 000
Hypercube
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Measurement Protocol

® Pick a random qubit x. Measure all except qubit x in Z basis.

g

A

A7 |
Quantum state Single-qubit

Measurement
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Postprocessing

® The measurement outcomes on |4 specifies an edge (b, b;) on

the Boolean hypercube.
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Postprocessing

® The i« post-measurement 1-qubit state ) on qubit x is
proportional to (by|y)|0) + (b;|y)|1).
100 110
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Postprocessing

® Use randomized Pauli measurement (classical shadow) on qubit x

to predict the fidelity « with the 1-qubit state

Average over @ to get
Shadow overlap ||

Single-qubit
Measurement
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Key Feature

Shadow overlap E[®]| accurately tracks the fidelity (i/|p
Elwo] > 1—cimplies (yply) > 1—1¢

ply)>1—ceimplies Elw| >1—¢€

7 is the time the random talk takes to relax to stationary z
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Physical Intuition

B R |
Shadow overlap F[w] = — Z Z Tr((_f?;-;;|ﬁ|b:-~>
i=1 be{0,1}*"!

® |+...+X+...+|and | has fidelity O.

I\

® |+...+X+...+]|and has E[w]= 0.
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Physical Intuition

Shadow overlap || Z Z Tr((b 1plbs;)
=i b,€{0,1}"!

.+ X+...4+|and has fidelity O.

..+ |and has [[o]= 2.
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Physical Intuition

B R |
Shadow overlap E|w]| = — Z Z Tr({b;i__-lmz’):;)
i=1 be{0,1}*"!
®|+...+X+...4+|and has fidelity O.

®|+...+X+...+]|and . hasF_Iw[=%.

® Shadow overlap has a Hamming distance nature.
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Postprocessing

® The post-measurement 1-qubit state |1/, , ) on qubit x is
proportional to (b,|y)|0) + (b,|y)|1).
100 110

/ Al | [X
00C% x| AX/Y/Z
Al 1AL 1A

Single-qubit
Measurement
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Measurement Protocol

® Pick a random qubit x. Measure all except qubit x in Z basis.

N7 | A
= *
A7 A

Quantum state Single-qubit
Measurement
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Relaxation Time

o Let 7(b) = | (b|w)|* be the measurement distribution.

® Let 7 be the time the random talk takes to relax to stationary 7.

With prob.
n(b)

n(b) + n(b")
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Applications

What can we use this new certification protocol for?

( Example 1 \

Benchmarking

Shadow overlap E[w] certifies

if the state has a high fidelity

"’Y
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Benchmarking quantum devices

Hilbert space d = 2% (Haar)

o
I

o
(0 0]
|

o
o~
|

4-qubit Haar random state
Coherent Noise

©
»
|

>
hy =1
I3
x
LL
©
O}
]
©
£
+=
wn
L

o
N
]

True Fidelity
XEB

Shadow Overlap

0.0
0.0

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is 2L
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Benchmarking quantum devices

Hilbert space d = 220 (Haar)
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Benchmarking quantum devices

Hilbert space d = 220 (Phase)
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Benchmarking quantum devices

Hilbert space d = 2% (Phase)

4-qubit random structured state
Coherent Noise

1.4 -
2?'12_
3 1.0-
(1
© 0.8 1
9
£ 0.6
1%

L 04_

True Fidelity
XEB

4
Il//) = Uphase® l'[fl) B2 Shadow Overlap
i=1

0.0 T T T T
0.0 0.1 0.2 0.3 0.4

*Shadow overlap normalized s.t., target state is 1, maximally mixed state is % Coherent Noise

Pirsa: 24050036 Page 38/47



Benchmarking quantum devices

Hilbert space d = 220 (Phase)
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Applications

What can we use this new certification protocol for?

Example 1 Example 2 \
Benchmarking ML tomography

Shadow overlap E[w] certifies Train/certify ML models,

if the state has a high fidelity such as neural quantum states,
!.. P e using shadow overlap E[w]
&
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Training/Certifying NN tomography

Represent |y)

(Dolw)
(b1 ly)

Network

Relative Neural Quantum State
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State-Cerification-long.pdf

Training/Certifying NN tomography

We consider learning a class of 120-qubit states with
exponentially high circuit complexity.

- Ground Truth Randomly Init. NQS
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40 60
Subsystem ={1, 2, ..., i

Pirsa: 24050036 Page 42/47



g State-Cerification-long.pdf ® Q & LT-J 2 ~

Page 67 of 74

State-Cerification-long.pdf

Training/Certifying NN tomography

Log loss (Tr) *  Fidelity Shadow Ove. (Tr)

Trained USing - Log loss (Val) —— Shadow Ove. - Shadow Ove. (Val)

shadow-overlap-based loss
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Applications

What can we use this new certification protocol for?

r Example 1 Example 2 Example 3 \
Benchmarking ML tomography Optimizing circuits

Shadow overlap E[w] certifies Train/certify ML models, To prepare a target state |y),
if the state has a high fidelity such as neural quantum states, we can optimize the circuit

’.‘ Y . using shadow overlap E[w] to max shadow overlap E[w]

10)®n 4 )
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Optimizing state-preparation circuit
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Optimizing state-preparation circuit
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Conclusion

® We prove that almost all quantum states can be efficiently certified
from few single-qubit measurements.

® Are there states not certifiable with few single-qubit measurements?
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