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Abstract: For quantum phases of Hamiltonian ground states, the energy gap plays a central role in ensuring the stability of the phase as long as the
gap remains finite. In this talk we introduce Markov length, the length scale at which the quantum conditional mutual information (CMI) decays
exponentially, as an equally essential quantity characterizing mixed-state phases and transitions. For a state evolving under alocal Lindbladian, we
argue that if its Markov length remains finite along the evolution, then it remains in the same phase, meaning there exists another quasi-local
Lindbladian evolution that can reverse the former one. We apply this diagnostic to toric code subject to decoherence and show that the Markov
length is finite everywhere except at its decodability transition, at which it diverges. Thisimplies that the mixed state phase transition coincides with
the decodability transition and also suggests a quasi-local decoding channel.
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Outline

1. Introduction and background

* Motivations

* Definition of mixed-state phase equivalence: two-way connectability

2. Markov length &
* “&’s role in mixed-state phase is similar to energy gap’s role in ground-state phase ”

* Relation to quasi-local decoders for topological codes

3. Example: dephased toric code

* Phase diagram from Markov length
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Why many-body mixed-states?

Physics:
Can quantum phase survive finite temperature & decoherence?
Finite temperature state Open system dynamics
eXp( _/BHlocal) exp(ﬁlocalt) [pO]

Quantum information:

Quantum error correction: How to reliably store and process
quantum information in a noisy environment?
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Why many-body mixed states, cont.

Let { |s) } be a basis of a quantum spin system

level of “coherence”

mixed states

p - Zss" (ISS"lS) <Sf|

purely quantum

[¥) = 2.5 asls)

classical

p — Zs I)S|S> <S‘

Ground states

ﬂ

Quantum phases

Stat-mech models

l

Classical phases

Mixed-state phase:
Unification and generalization
quantum & classical phases?

Many-body physics
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LU circuit & ground state phase equiv.

Definition of ground state phase equivalence:

A(Hg) >0 Vse (0,1)

Y(Ho)) = @~~~ —

Adiabatic path:

Y(Hy))

Hastings, Wen. 2019

Gircuitdebinition: 110) = U |[¢p1) U € local unitary circuits

Benefits of the circuit definition:
* Phase equivalence is a property of states only

* Common properties of states within phase (Lieb-Robinson bound)
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LC circuit & mixed state phase equiv.

O(log L)
—
L1 o4 1 41 11
quantum channel o T T 1 O(log L)
£l =2 Kl (K, c o~ L L
I I I I | |

1. Non-invertible in general
2. Can only destroy but not generate long-range feature

Def: Mixed-state phase equivalence

Two states p; and p, are in the same phase if there exists two LCs
C1, C5 such that:

Cq [Pl] &~ 03 C, [Pz] &= Pq

Coser, Pérez-Garcia 2019
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Are mixed-state phases stable small perturbation?
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Zoo of mixed-state phases

SRE phases
TO phases

classical states

Pei = Dos Dsls)(s]

})UI'L‘ states
%)

intrinsically mixed
TO phases

}

. - g= €l
PTO ~ L"I‘()) PimTO 18 LRI*J [ ]
PimTO % |¥T0) ~ Y. p; |SRE;) (SRE;
e.g. e.g. e.g.
Under-decohered TO ZX-dephased toric code Finite temp toric code in 2D
Low-T toric code in 4D decohering anyon theories Over-decohered TO
Dennis, Kitaev, Landahl, Preskill. 2001 Wang, Wu, Wang. 2023 Hastings. 2011
Lu, Hsieh, Grover. 2020 Sohal, Prem. 2024 Chen, Tarun. 2023
Fan, Bao, Altman, Vishwanath. 2023 Ellison, Cheng. 2024 Chen, Tarun. 2024

SS., Zou, Hsieh. 2023
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Are mixed-state phases stable small perturbation?

LRE po & local Lindbladian £

pt = Gipo] = €' [po]

p:’s phase of matter as a function of time?

Conjecture 1 Conjecture 2
*—o-—o > A >
t t
4 v A A v 4
TO Phase2 Phase3 Phase3 TO Phase 2

Why it is hard?

* Need to either find the reversal LC circuit, or prove its non-existence

Markov length: A computable quantity of p; that tells the phase diagram
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Quantum Conditional Mutual
Information (CMI) and Markov length

Conditional mutual information (CMI)

1,(A:C|B)=d,(4:BC)—I,(A:B)

| |

correlation correlation
between A & A° between A & B

Small CMI — Correlation between A and A€ is

mostly captured by a buffer B surrounding 4

Definition: A state p has a finite Markov length ¢ if for
any A U B U C tripartition, the CMI satisfies:

I(A:C|B) < exp (——‘liSt((A'C))

E.g. Gapped ground states, Gibbs state of commuting
projector Hamiltonian...
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Main result

Lic(0,1) being a e S.t.
Ly

local Lindbladian & =0(1) Vit

Implies

HE;E(()_I) beinga PO  ~w_ ___— Pl

local Lindbladian L .
Implies

All states along the path are of the
same mixed-state phase

[n mixed-state phases, £ ! plays a similar role as the energy

gap A in ground state phases!
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Lemma: Local recovery problem

Q: Suppose £, (‘error’) acts on A, can we find a quantum
channel on AB that recovers £4’s influence on p?

B = [y gAB S.t. SABOEA[p]%p

By using the Petz’s map as the recovery map
Eap = P(Ea, paB), the recovery error is bounded as:

N 2
‘SAB o€alpl —p 1 <I,(A:C|B)

~exp(—r/§)

Based on Junge et al. 2018

P(g [))H — [ix::x: 2((‘,03ll(ﬂ-ﬂ"ﬁ')-I—1)pI_.';Tg]L [5[[)] _l;” ()g[[)] _12_”1| p 2 dr
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How to construct the reversal circuit

I I O I N ---}--4---1--4---}--4--4- ps
4 41 ] [ 1 ] | ]

t--4---}--4--1--- P3

, _ ' C I| C I| G I| )

T exp (f(] ﬁTdT) discretize | L = L l 2

Il |I Il |I 1---1 P1
T 1T T 1T T T 1 [T T T TN
Po Po \

Assumption:
state p, has Markov length &, for € € {1,2, ..., t/6t}

Big picture:

Reverse the dynamics gate by gate, such that
* Reversal dynamics is an LC circuit

* Total approximation error is under control
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Constructing reversal circuit
g G (reorganized)

(Solution to a local recovery problem)

) ( ) ( (ﬂ‘q;}t)AB :P((g:r,t)Aa(pt)AB)

( 1 ( ) To achieve:
. 4 G °Glpo] — pol1 <€
[t suffices to require:
b> € log (224L)

= Reversal circuit 1s LC
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G as a quasi-local decoder

Let |¢) € V, a topologically degenerate ground state subspace.
Suppose L;c(p,1) 1s a noise process.

If )y T XN __—pu & =0(1) Wt
L

Then EIE.(_,-,: V) = S __— PV
Ly,

Due to local indistinguishability, £, = L is independent of [¢) € V
Thus:
Gogllw) Wl =lv) (vl VIv) eV

= oy e .
where G = T(g.]() Ldt and § = 7'(3_]“ Ldt

G is a (quasi-)local decoder for the noise channel G.
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Q: What happens when the Markov length diverges?

A: Dissipation-driven quantum phase transition

Example: dephased toric code
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Kitaev’s toric code model

t.c.) is the ground state of © © © ©
Q O O TZ Q

L > N S
X X o] Z o]

OeP +eVvV
© t © O
Dephased T.C. state
po = |treike] Clpl="%"" %(Z.,:;)Z.,- —p)

Ppe = eu[ﬁo] = f\ﬂf‘?b[ﬁnl Dt = %(1 —e')
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Aspects of dephased toric code

pp can be mapped to a random bond Ising model (RBIM), having a Z;, symmetry-
breaking transition at p, ~ 0.11

1. py, losses stored quantum info at p, [Dennis, Kitaev, Landahl, Preskill 2001]

2. pp’s topological entanglement negativity vanishes at p. [Fan. Bao, Altman, Vishwanath 2023]
3. pp becomes is SRE after p, [Taruns alk]

4. pp ~ |t.c.) (i.e. LC bi-connected) when p < 0.04 [ss, Zou, Hsich]

Our focus...
* Behavior of p; s CMI & Markov length
* Argument based on RBIM mapping

* Numerical results
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CMI as point defect energy cost
I(A:C|B) = S(AB) + S(BC) — S(B) — S(ABC)

Irirt 5, (AB)-S, (B)

=FRrBIM.p — FrBiM,p

\

=(free energy cost of a point defect in the center of a
2r x 2r RBIM)
= tl(‘f.p(Qr)

Silllil‘dl‘ly S/’P(ABC) - Sf’p(BC) — Elof'.})(ilr)

I(A . C|B) = Elcf(ilr) — El(!f(?r)
{ e~ T/ B=L D

s P = Pe
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| | (P_Pr-);
I(A : ClB) =r— ¢ ((p _ p(-)‘rl/“)
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2 4 6 8 10 12 14
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Dephased TC’s phase diagram

pp’s Markov length is finite everywhere except at p,.

§=0(Q) § =0 E=00)
p:o @ > p:0.5
Pc

toric code phase SRE phase

logical info preserved

7 quasi-local decoder
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Summary

[(AZC|B)N(’.7"/E Po

Along a local Lindbladian evolution, if the Markov length...
» ...stays finite = phase equivalence along the path, preservation of logical info

* ...diverges = dissipation-induced phase transition
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Q: What happens when the Markov length diverges?

A: Dissipation-driven quantum phase transition
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Dephased TC’s phase diagram

pp’s Markov length is finite everywhere except at p,.

§=0(Q) § =0 E=00)
p:o @ > p:0.5
Pc

toric code phase SRE phase

logical info preserved

7 quasi-local decoder
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