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Quantum Phases of Matter beyond pure states?

7 Mived Srukes
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—
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h
Quantum
Phase Transition (3D Ising)
Phase diagram of 2D toric code in the
presence of decoherence
[Dennis, Kitaev,
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Quantum Phases of Matter beyond pure states?

WMired Stoukxes

\

—

Several interesting developments:

Equivalence between mixed-state phases [Coser, Perez-Garcia '19; Rakovszky, Gopalakrishnan, Keyserlingk '23;
Koenig, Pastawski ’13; Hastings '11].

Renormalization group approach and quantum error correction [Sang, Zou, Hsieh ’23; Sang, Hsieh '24;
Lavasani, Vijay '24].

Weak vs strong symmetries, corresponding SSB, and mixed-state SPTs [de Groot, Turzillo, Schuch *22; Ma,
Wang '22; Li, Jian, Xu '23; Ma et al '23, Lessa et al '24; Sala et al '24,...].

Various entanglement measures [Lu, Hsieh, TG ’20; Fan, Bao, Altman, Vishwanath '23,...].

Replica-based approach [Bao, Fan, Altman, Vishwanath ’23; Li, Jian, Xu ’23; Zou, Sang, Hsieh ’23, Li, Mong '24,...].
Intrinsically mixed topological states, and higher-form symmetries [Wang, Wu, Wang ’23; Sohal, Prem ’24;
Ellison, Cheng '24; Li, Lee, Yoshida ’24,...].

LSM constraints/anomalies [Kawabata, Sohal, Ryu ’23; Zhou, Li, Li, Gu ’23; Hsin, Luo, Sun ’23; Lessa, Cheng, Wang
'24; Wang, Li '24,...].
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Quantum Phases of Matter beyond pure states?

WMived Shoukes

\

)
AN ==

In this talk we will employ a rather coarse characterization based
on mixed-state entanglement, and discuss a few examples.

Zeroth Order question:
When is a mixed state unentangled (“separable”)?
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Separable (= Unentangled) Mixed States

[Werner 1989] [ff a density matrix p admits a decomposition

p= . pi lw)wl, with p,;>0

where each |y;) is unentangled between parties A and B i.e.

|w;) = | ;. 4) ® | @, ), then p is bipartite separable (i.e. unentangled).

1
Example: p = p|¢¥Ben)(¥Ben| + (1 — P)Z
where [VBen) = ﬁ a0 = 8 )
0 1/3 1
P
separable non-separable

Many-body analogs?
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Short-ranged entangled (SRE) mixed states
= generalization of separability to many-body setup

If a density matrix admits a decomposition p = Z p;|w;)(w;| where each

l
| w,) is short-ranged entangled (i.e. can be prepared via a finite-depth, local, unitary

circuit), then we will call p a “short-ranged entangled (SRE) mixed-state”.
[Hastings 1106.6026]

circuit depth
= constant
=]0
2 L £

lya) ly2)
probability p, probability p,
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Quantum entanglement vs classical long-range correlations

Coser, Perez-Garcia (1810.05092): Two mixed states in the same phase if they can
be connected via finite time, local Lindbladian evolution.

Example: (a) |00...0)(00...0| (b) %(IOO...O)(OO...OI +[11..1)(11...1])

belong to different phases of matter due to long-range classical
correlations in (b).

However, both states are unentangled, and hence “trivial” from separability perspective.

One may also define an SRE mixed state as one that has an SRE purification
(e.g. Ma, Wang 2209.02723). In this definition, classical correlations will again
be regarded as non-trivial (e.g. state (b) has no SRE purification).
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Decoding transition as a separability transition

[Dennis, Kitaev, Pc p = error rate

: * »
Landahl, Preskill 2001
i prats ] Correctable phase = Non-correctable phase

Ry
A
e

.

J

: _Y_
topologically Environment topologically
ordered ordered
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Decoding transition as a separability transition

Recent works, in particular, Fan, Bao, Altman, Vishwanath [2301.05689; 2301.05687],
and Lee, Jian, Xu [2301.05238] have formulated decoding transition as an intrinsic
transition for the decohered mixed-state.

» Logical qubit lost to environment for p > pc (as detected via “coherent information”).
* Renyi negativity also shows a phase transition from log(2) to zero.

* “Markov length” diverges at p = pc [Sang, Hsieh 2024].

Pc p = error rate
¢ #
Correctable phase = Non-correctable phase

Can one show that the density matrix is SRE in the non-correctable phase?
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Decohered density matrix

‘z
Z —
Hoq toric = _qu VZ Zp X\ P X
Z
X

local channel: &c[po] = PZcpoZe + (1 — p)po

L

[Dennis, Kitaev, p X er Z2d Ising,ze IQiﬂe)(Q«Tel 2 kh\zv’ \

Landahl, Preskill '01]

sz Ising,ze (p) = Z eB 2 ZeIlyee 2o ta,nh(ﬁ) =1-—2p

Zv

Q0,) o< [I,(I +[1.5, Ze)|Te) = subset of toric code eigenstates
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Decohered density matrix

X
‘Z
Z —
H2d toric = Z’U VZ Zp X p X
7
X

local channel: &c[po] = PZepoZe + (1 — p)po

L

La.ﬁ:?f?%ﬁﬁ‘fbu p X er sz Ising,ze IQwe><Q$e| K%\Z 7 \
Zy N

L

Another viewpoint:

Statistical weights Z24 1sing,z.

inherited from “parent” cluster state.
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“\/ﬁ trick”

Key idea: Write decohered p as

phase diagram of
T 2d random bond Ising model

Nishimori line

memory trivial
D= ZM(ZJ\/[_? = Z [¥m) (Y| v il
* |ghm) m \
7
p

Claim: All | qu) undergo transition from topological to trivial precisely at p. corresponding

to the decoding transition. Topological Renyi entanglement of | lpm), as well as tunneling

probability from one logical state to another relates to free energy cost of inserting a
domain wall in 2d random-bond Ising model along the Nishimori line.

Similar argument works for several other CSS codes in 2d and 3d, including
fracton codes e.g. X-cube model.

[Yu-Hsueh Chen, TG, 2309.11879]
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Structure of the “optimal” decomposition

Pi= Z VPlze)(ze| /P

Ze

\/ﬁ'ze = 1> s Z[ZQd Ising,ze (_’p)]Ulee)

sz Ising,me (p) — Z eﬁ Ee Te Hvee Zy
zv Zq fLE \z\f’
tanh(8) =1 —2p ( | \
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Structure of the “optimal” decomposition
Q= Z VPl|ze)(zel\/p

\/ﬁ'ze T 1> s Z[Z2d Ising,ze (p)]1/2|$e)

0.8 1
+L=5_
log(2) | '
E 0.6 | [Ting-Tung Wang, Menghan Song,
SEISTICT Zi Yang Meng (Unpublished)]
A B = 0.4
el &
= 0 0.2
&
g (L) T (tanh(1/T) =1-2p)
0. ; . |
0 0.5 1 1.5 2
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Structure of the “optimal” decomposition
O Z VP|ze)(zelv/P

\/ﬁ'ze = 1> s Z[Z2d Ising,ze (_’p)]UQl-'L'e)

More generally, for a mixed-state p, define

[}

Liter tt, CMImin =inf Y piI(A: B|C)y,

% 0 e T where the infimum is taken over all possible decompositions

ofpasp =)  pilthi) (il

CMInmin = “long-range part of mixed-state entanglement”

Pdec # 2, PnlSREmXSREL|  pgec = ., Pm| SRE)(SRE,|

m m
® >

critical error rate error rate
CMlmin = 0 CMImin = O
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Separability perspective on double state & canonical purification

0) = pu ® 15| P)yen “double state” = canonical purification of p*/tr(p?)

[e.g. Bao, Fan, Altman, Vishwanath 2023; Li, Jian, Xu 2023]

|\/ﬁ> = \/ﬁq{ ® I?l@)?—t@ﬂ canonical purification of p

If |\/E) is SRE, then p @ 1 can be written as a convex sum of SRE pure states.

If | p) is SRE, then p2 ® 1 can be written as a convex sum of SRE pure states.
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Separability perspective on double state & canonical purification

10) = pu ® I5|P)uen “double state” = canonical purification of p*/tr(p?)

[e.g. Bao, Fan, Altman, Vishwanath 2023; Li, Jian, Xu 2023]

|\/ﬁ> = \/ﬁq{ ® I?Zl¢’>7—t®ﬂ canonical purification of p

P’ LRE, p” SRE
lp ) dc_)ruEl:;EIe_t(;plological | p) single topological
Sl (i.e. TEE = log(2)

r BNy
p(e (RBIM) p@ (Ising)
L 2 L

» P = error rate
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Purification to a trivial state for p > pc

pc(RBIM)  p = error rate
L >
Correctable phase Non-correctable phase

p(P) = tra(|¥ XY )

%) = ([Tt) (1ve) @ 105)
p

B) =Y AJZBIx) Uyp=—+i
|wﬁ>§ (B)x,) iy
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Incorporating symmetries

If a density matrix admits a decomposition p = Z p; | w:){w;| where each

[/
| ug) is short-ranged entangled, and can be prepared via a finite-depth, local, unitary

circuit composed of symmetric gates, then we will call p a “sym-SRE mixed-state”.

circuit depth
= constant
=10
< L R

lw) |ys)
probability p; probability p,

Each local gate (3 satisfies, [, U] = 0, where U is the generator of the symmetry.
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Symmetry enforced separability transitions
In cluster states

2

H=—-) (Zb;j-1Xa,j%b,j + Za,jXb,jZa,j+1)

Il
-

9=

ha,j + he ;

=il

Ground state p, = (1 —=~h, )(1 — h, ) is a non-trivial SPT phase (i.e. sym-LRE)
0 a,j b.j

J
protected by Z, X Z, symmetry.

Let’s subject p, to the channel Eafbij o] = (1 —pa/b)p+pa/bZa/b,ija/b,j

Is the resulting state sym-SRE at any non-zero p, and/or py ?
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Symmetry enforced separability transitions
In cluster states

(i) : e

Py
0.5

GHZ

SPT

trivial

GHz 05

Pa

Result: p sym-LRE as long as p. = 0 or p» = 0 (regions i, i, iii).

sym-SRE if both p,, p» non-zero (region iv). Proof uses

Lieb-Robinson bound [Yu-Hsueh Chen, TG, 2310.07286].

Ma, Wang [RR09.027R3], and Ma et al [R305.163991: in regions i, ii, iii, p cannot be purified to an SRE pure
state using symmetric, finite-depth channel. Recent relation to SPT as a resource for transmitting quantum

information: Zhang, Agarwal, Vijay [R405.05965].
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Symmetry enforced separability transitions
In cluster states

@ 4 i
0.5 0.5
(iii) (iv) GHZ trivial
L. p L. p,
(i) GOBRO5L .« SPIrSeereweosnt-
Py p. = 0.109 Py p. =~ 0.109
0.5
(iii) trivial
: P
() (ii) SPT topo. 0.5 £
order
(C) (1)
b — e~ 0.029
?. Y :
= = trivial
i », e ivi
ju} ol - N/ B |px009 P~ 0.029
Z. h[ll‘:
e — D
- - topo. 0.5
order
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p+ip SC subjected to fermionic Kraus operators

pa = E[|p+ip) (p-ip] &ilel = (1 — p)p + prjpy
(explicitly breaks fermion parity from strong to weak)

1.0

0.5

l}’L'}’R X 00

-0.5

Double state:

-1.0 L%

Claim: Pd = E p; |Gapped non-chiral); ;(Gapped non-chiral]
1

1.00

basic idea: i & P
-~ density matrix
0.75 [ SO
) Li3 (& o uniform

= Z V/pa|product state),, , (product state|\/pq 3 ”’I’ PAES s staggered

R e L
= 0.50 L3 L3

cdsdecpeapenen

PO eR——

b=

J ABC

0.25

[Yu-Hsueh Chen, TG, 2310.07286] o0

10 20 30 40
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p+ip SC subjected to bilinear Kraus operators

pa = E[|p+ip) (p-ip|] Exyy ol = (1 — P)p + Pyx¥y PYxVy

(fermion parity = strong symmetry)

iy 0 YLYR axJ’R

Double state:

7R
Field theory arguments suggest the following phase diagram for the double state:
® - © = O
| p+ip) tricritical Spontaneous breaking of
Ising fermion parity from strong to weak symmetry.

[Yu-Hsueh Chen, TG, 2310.07286]

Is there a phase transition in “single copy”, as detected by, say, § = — tr(p log(p))?

If yes, strong-to-weak symmetry breaking of fermion parity, no pure state analog.

Other examples of strong-to-weak SSB: [Ma, Wang ’22; Li, Jian, Xu ’23; Ma et al '3,
Lessa et al '24; Sala et al '24]
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* Decoherence induced separability transitions.
e Separability transitions in Gibbs states.

A. Quantum Ising model.

B. Toric codes.

C. NLTS Hamiltonians.
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Spontaneous symmetry breaking as
a separability transition

Claim:
H=-%,4,2%2Z;— hy,X; The Gibbs state p ar e sym-LRE for T < T.

on a square lattice Proof by contradiction: Assume p is sym-SRE for 7' < T..

A

T separate p into even and odd Ising sectors: 0 = P+ + p—

Classical e
Phase Transition (2D Ising) Pre Ea pa,il"pa,ﬂ:)<¢a,:|:|

p sym-SRE = |, +) SRE

Ordered Disordered

Quantum B = (es|Zi Zulbas) — Vet ) W |20 i)~ €~V
Phase Transition (3D Ising) 0 0 o
= tr(pZ;Zk) = X4 D 0 Po,t(Va,+|Z; Zk|a,+) ~ e~ li=ile

Contradiction because of spontaneous long-range order for 7 < T

[Yu-Hsueh Chen, TG, 8310.07286, argument inspired from Lu, Zhang, Vijay, Hsieh 2303.15507]
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Spontaneous symmetry breaking as
a separability transition

H = _E(i,j) ZiZj —hY; Xi

on a square lattice

A

“optimal” sym-SRE decomposition:

i
p=3" Volz.)(eulv

Classical
Phase Trahsition (2D Ising)
Conjecture: Pure states \/ﬁ | x,) are SRE only for T > Tc.

Ordered Disordered

Quantum h
Phase Transition (3D Ising)

[Yu-Hsueh Chen, TG, 8310.07286]
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Consider Gibbs state of Toric code in various dimensions...

Z
X
H= -As¥A; —8Y,Bp — z| r [z
zZ

1 1
Let's write pas: p= - Z e~ PH/2|m)(ml|e~PH/2 = 7z Z |$m ) (Pml
TR S e m
= 4m)

where { | m)} = complete set of product states in the X or Z basis.

One can argue that all | ¢,,) are SRE whenever T > min(Ta, Te) where Ta, Te correspond to
the critical temperatures of the classical Hamiltonians As, Bp

A 3

TA TB T L= HSD toric C0d0+hZXi T H= H4D toric code +hZX,,
2+1-D 0 0
/1 Deconfined SRE

Rl 0 B anyons Confined

ayne Confined
4+1-D | 44 Ag SRE - o

> h > 1
T = 0 topological  Quantum
order Phase Transition

— topological negativity indicates yes.

[Tsung-Cheng Lu, Tim Hsieh, TG 1912.04293]
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* Decoherence induced separability transitions.
e Separability transitions in Gibbs states.

A. Quantum Ising model.

B. Toric codes.

C. NLTS Hamiltonians.
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An exotic separability transition

Recently, quantum Hamiltonians have been discovered [Panteleev, Kalachev 2022; Leverrier,
Zemor 2022; Dinur et al 2022; Anshu, Breuckmann, Nirkhe 2022] which satisfy the
Freedman-Hastings “NLTS conjecture”:

NLTS = J e, > 0 such that any state |y) that

satisfies (| H|w)/N < e, cannot be

Energy

repared via a constant depth circuit.
density b :

Can the Gibbs state of NLTS satisfying Hamiltonian be SRE?

Suggestive arguments that Gibbs state has no partition fn singularity at T > 0.
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NLTS = 3 e, > 0 such that any state |y) that

Energy satisfies (| H|y)/N < e, cannot be

density prepared via a constant depth circuit.

One can show that the Gibbs state of NLTS Hamiltonian in fact

cannot be SRE for T < T, # 0.
Basic idea: if it were SRE for all T > 0, i.e. if e P/ Z Zpi | w;){w;| where

!

| 1;/1-) are all SRE, then the expectation value of energy density would exceed e,

leading to a contradiction.

= Separability transition in the Gibbs state without any partition

fn singularity! (conjecture).

[Yu-Hsueh Chen, TG, 2310.07286; See also Hong, Guo, Lucas, 2403.10599: finite-T memory in these
same Hamiltonians]
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Summary and a few questions

* Separability criterion provides an organizing principle to classify mixed states as
long range or short range entangled, with or without imposing symmetry.

* The decoding transition in several topological codes coincides with the separability
transition: above the error threshold, the mixed state can be written as a convex
sum of short-range entangled states.

e Other examples of separability transitions: mixed SPT states, spontaneous
symmetry breaking, Gibbs state of NLTS Hamiltonians.

Generalization to other topologically ordered/SPT states?

Theory of separability transition in Gibbs state with no partition-fn singularity?

Field theoretic calculation of entanglement of proposed optimal pure states?

Interplay of noise and braid statistics, e.g., toric code subjected to X + Z Kraus operators?

0.5

0.4

|P(k)) = [ [ e"*+2°| Toric code)

critical
(c=2) subjected to (X+Z) Kraus operators with

probability p.
2403.06553

0.1+ double
topo.

BKT?
0.0

0.00 0.25 0.50 0.75 1.00
h
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NLTS = J e, > 0 such that any state |y) that

Energy satisfies (| H | y)/N < e, cannot be

density prepared via a constant depth circuit.

One can show that the Gibbs state of NLTS Hamiltonian in fact
cannot be SRE for T < T, # 0.

Basic idea: if it were SRE for all T > 0, i.e. if e P/ Z Zpi | w;){w;| where

l

| 1;/1-) are all SRE, then the expectation value of energy density would exceed e,

leading to a contradiction.

= Separability transition in the Gibbs state without any partition

fn singularity! (conjecture).

[Yu-Hsueh Chen, TG, 2310.07286; See also Hong, Guo, Lucas, 2403.10599: finite-T memory in these
same Hamiltonians]
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