Title: Repetition Code Revisited

Speakers: Matthew Fisher

Collection: Physics of Quantum Information
Date: May 27, 2024 - 9:15 AM

URL.: https://pirsa.org/24050027

Abstract: "Optimal fault tolerant error correction thresholds for CCS codes are traditionally obtained via mappings to classical statistical mechanics
models, for example the 2d random bond Ising model for the 1d repetition code subject to bit-flip noise and faulty measurements. Here, we revisit
the 1d repetition code, and develop an exact "stabilizer expansion™ of the full time evolving density matrix under repeated rounds of (incoherent and
coherent) noise and faulty stabilizer measurements. This

expansion enables computation of the coherent information, indicating whether encoded information is retained under the noisy dynamics, and
generates a dual representation of the (replicated) 2d random bond Ising model. However, in the fully generic case with both coherent noise and
weak measurements, the stabilizer expansion breaks down (as does the canonical 2d random bond I1sing model mapping). If the measurement results
are thrown away all encoded information is lost

at long times, but the evolution towards the trivial steady state reveals a signature of a quantum transition between an over and under damped
regime. Implications for generic noisy dynamicsin other CCS codes will be mentioned, including open issues.”
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Repetition Code Revisited

Perimeter
5127124

MPA Fisher

Noisy (open) quantum system dynamics: All guantum mechanics lost at long times
(exception: 4d toric code)

General Goal: Measurements to control open system (noisy) dynamics

Bath

=l

» Explore dynamics of quantum information under monitored/noisy dynamics; ﬁ(T)
“Stabilizer expansion” for evolving density matrix

Results:

» Unmonitored noisy quantum dynamics: Non-trivial guantum mechanics
approaching trivial dynamical steady-state

C/ QAEmEm®O
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Collaborators

 Stabilizer expansion dynamics: To appear...
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Jake Hauser Yimu Bao Shengqi Sang Ali Lavasani Utkarsh Agrawal

« Unmonitored noisy quantum dynamics: To appear...

Stephen Yan Sagar Vijay
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Open system (noisy) “Dynamics”
p(T) = N¥(pq(0))

N It
N =

N Noise channels

System Qubits (Q)

C/ QAEmEm®O
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“Monitor” (measure) to “control”
pou(T) = (Mo N)®"(pg(0))

kool O

[ } Measurement
g i channels

0)

M Noise channels

==z <Lz

System Qubits (Q) Measurement - ancillas (M)
C/AmBEOO
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Repetition Code w/ 3 qubits

3 Qubit Bit flip code Redundant encoding
0) = 10) ®[0) ® |0}
[L,k,d] =[3,1,1] Stabilizer Code 1 =1)®|1)®|1)

Lf 3 Phy§|cal Quptts g1 = Zl Z2
k = 1 Logical Qubit — 7.7
2 stabilizers g2 = 4243

Codespace  ¢:|W) = |U) |¥) = a|0) + b[1)
(logical qubit)

Logical (Pauli) operators: 7 = 7, Z|z) = (—1)%|z)
|

W= Xk X|z) =

e/ Amm®O
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Correcting Bit-flip errors

Single qubit flipped, corrupting state:
) = |¥;) = X;[¥)  7=1,23

Measure stabilizers in “corrupted state” syndrome Z1Zy 2l
— one of four possible outcomes (syndrome) | ) 1 1
|91) Xaly) | -1 1

= (2129, Z273) = (£, + ) | Xol¥) | -1 |
(91,92) = (2122, 2223) = (£, %) lbs) Xalw) | 1 .

Syndrome determines which qubit was flipped

Flip that bit back, recovering the original state

= 0 N =)

C/ QAEmEm®O
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Error correction (recovery) stat mech models

Topological quantum memory*

Eric Dennis.':l”’ Alexei Kitaev,'?* Andrew Landahl,®% and John Preskill(®)** arXiv:01.10143

Topological stabilizer quantum codes

Example: 1d repetition code; repeated bit-flip noise and faulty “syndrome” measurements,
with error rate p

Goal — compute error threshold, p.

Pc

Encoded (initial) logical qubit Quantum information
(quantum state) is recoverable lost to environment

C/ QAEmEm®O
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Error threshold stat mech models

I —h?l l: Para
time _,.,-""/Nishimori line
- 4
r - - . ' - N ‘ N
0 et 1 t + + t
pac - 0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 040 0.45 0.50
P
Syndromes and errors 2d Random Bond Ising Model
on Nishimori line (RBIM)

p= probability of negative bonds
=25) e
e %f =p/(1 - p)

0 @ P
FM pC PM
Information is Information
recoverable is lost

C/ QAEmEm®O
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Goal: Quantum information dynamics

Explore time-evolving density matrix under bit-flip/measurement dynamics

p(0) — p(T)

Derive “stabilizer” expansion for evolving density matrix

Generates a “classical” description of quantum info dynamics

T

—H(o l1—oj,14+1)/2 l—0j0jt+1)/2

pQM(T) = Ze H( )HQJ( L H Zgu‘_z .
o J t=1

Compute (coherent) quantum information; determines information loss/retention

Result: “Stabilizer” stat mech model is dual to RBIM

Builds on and generalizes important work p(0) — p(1)

Diagnostics of mixed-state topological order and breakdown of quantum memory

Ruihua Fan,!** Yimu Bao,>'* Ehud Altman,>? and Ashvin Vishwanath! arXiv:2301.05689

C/ QAEmEm®O
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1d Repetition Code Revisited

L Qubits in 1d w/ periodic boundary conditions

Code space: two dimensional spanned by FM states;
nY - L =T, - L

@) =lo)== )= L)

One Logical Qubit: ‘qb) — a‘ﬁ) 4 ﬁﬁ)

Stabilizer Code:
Check operators 9i = ZiZiyr; t=1,2,..L ng) — ‘w>

L —1 Independent Stabilizers  (Z122, 2223, ..., 21 1ZL)

C/ QAEmEm®O
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Initialize Density Matrix

Initial Density Matrix maximally mixed in code space
L

pq(0) = [0)(0] + |1)(1] = H(l +95),

Re-express as stabilizer expansion (summation over stabilizers)

L
= (1-0;)/2 L
pQ(O) o Z H gj ’ G Ising symmetry since H gj = 1

{Gj::i:]_} j:1 ]

Dynamics:

* Noise (Incoherent bit-flip or coherent unitary)

* Measure check operators and store syndrome in ancillas
* Repeat...

Z, Symmetric dynamics; Krauss operators commuting with X =

J

X;
1

L

C/ QAEmEm®O
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N(p) = I1; Ni(p)

Ni=(1—-p)p+pXipX;

Act w/ Noise channel: Weighted “Stabilizer expansion”

Incoherent (Bit-flip) noise channel

{oj}=%1

L
H() — —Jp E 0;04+1
J=1

L
N(pg0) = 3 e @ ] 4t~

g=I

Phases of Ising model:

C/ QAEmEm®O
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1d Classical Ising Model 2.J,, = —log(1 — 2p)

PMPhase p < 1/2; Jp < 00 This will be the “recovery” phase

FMPhase P =1/2; J, =00 N(pg(0)) ~ ig

Maximally mixed - “info lost” phase

Page 13/37



Measure Check Operators (stabilizers)

“Weak” Measurement operators

A e i
) e m[l + (—=1)™AZ; Z;41] 0<A<L1 A=0 No measurement
A=1 Projective measurement
Y MMM, =1
m=0,1
“Weak” Measurement Channel [ ]

measurement results stored in ancilla’s,
one for each check operator

Mai(p) = ZMQPMQI ® lm)p(m| T MM, ML

FaUIty Measurement Channel Projective measurements w/ subsequent

bit-flip on measurement ancillas

Nu(pm) = (1 —q)pm + ¢ Xmpm X

C/ QAEmEm®O
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“Monitored” Dynamics: Repeating Noise/Measurements
pom(T) = Er(pq(0))  &r = (MoN)®*

T

= o 1—0'3','11 1 2 1_0'j,t0'j,t 1 p:

pau(T) = e MO [ Lo [ Zagy
Y i j =1

Zy; Pauli Z-operator for ancilla qubit corresponding
to stabilizer measurement j at time t.

Dynamics: “Stabilizer Expansion”, weights 2d Classical Ising model

e I
H(0) = =) Y [Jp0itTit1, + Jq0i105141) t 7
=1 t=1 1 p

Weak/Faulty measurements generate Ising Jq
coupling in time-direction, favoring FM

2J, = —log(2)/(1 + A?)) = —log(1 — 2q)

C/ QAEmEm®O
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Decoherence (vs Monitored Dynamics)

Throw away (trace out) measurement outcomes

Trace out ancilla’s - this gives “unconditional” dynamics

pQ : TIMPQM Sets Ojt = 0jt+1 = 0j
5 L
o TH (1—0;
o) = RO L™ e o
o \ F=1 j=1
At long times (1d Ising model orders) and All info lost into the “environment”

density matrix becomes maximally mixed

po(T — 00) ~ 1g

C/ QAEmEm®O
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Quantum Info Dynamics: Coherent Information

Form Bell pair between reference (R) and logical qubit Q M
paur(0) = [QR)QRo| @ 0)u(0] R
[QRo) = 10) ® [0)r + 1) ® [1)r | ( e o o e ] =
Coherent Information:
Quantifies "transmission” of quantum information L b + 1
[c(R)YQM) = Som — SQuMR -
Initially: I (t = 0) = log(2) / QO My

Ro

After channel dynamics:
If Ic(T) =0 Al quantum info lost into “environment”

If IC(T —3 oo) = log 2 All (one qubit of) quantum info is transmitted (retained)

C/ QAEmEm®O
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Renyi Coherent Information

nt Renyi Coherent Information ISV (RYQM) = -y log Trpgns / TrpG M r
limp 1 IS = I¢

Need to compute n-copy

“partition function”: Z = T,r.p’ng

Use “Stabilizer Expansion”

Replicate Ojt —F O';-It o B . A
Perform Trace: Z,, = Trpg M

e n—1
Gives constraint: | I o _
- Solve constraint U::?:t = | I cr;?jt
=4 a=1

o/ AEZm®@O

Pirsa: 24050027 Page 18/37



Derived n-1 Flavor 2d Ising model

_Hn n
2y = Z € Symmetry (Z3 % Sn)/Z2
{o>}

S, n-fold permutation symmetry,

n—1 R trace removed one Z 2
H,=)Y H(e*)+H(]] %
a=1 a=1 foe =2 da=2H

E P
H(c) = - ZZ[Jin,taé-l-l,t + J30:.¢0% t41]

i=1 t=1

p=noise strength

Phase Dlag ram q="weakness” of measurement

0 O > Jpy=dg  (p=0)
PM FM

Low-noise/strong-measurements Noisy/weak-measurements

C/ QAEmEm®O
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Coherent Information via Stabilizer Expansion

t
Express Renyi coherent information as 1 J p
I (R)QM) = —log( > exp(~AF(da)) Jq
{da=0,1}
AF(do =1) = free energy cost w/ column of negative X
J.bonds i lica, A
A B == obonds in replica, (y
AF(d. =1i~0 AF(dy=1)~T
0 _. — Jp =Jq (p:q)
PM FM
Noisy/weak-measurements
Io(T = o) = log 2 Ic(T —00) =0

C/ QAEmEm®O
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Coherent Information after dynamics

ET — (M ON)®T

0 O » Jp=dg  (p=0)
PM FM

“Low” noise, "strong” measurements Noisy, weak measurements

Ic(T — ) = log 2 el na)l=0

All (one qubit) of Quantum info No quantum info remains after channel

transmitted thru the channel (retained) Mutual information between QM and R is log2

Reversal channel (R) can (in principle)
recover initial quantum information

(Ro&)(19)(®]) = ) (¥

V’?,b) in code space
O/ AEBH@O

One classical bit of info survives, the
conserved parity of initial state X = ﬁ X = 41
= ;=
71=1

Pirsa: 24050027 Page 21/37



(n—=>1) flavor Ising model dual to (disorder averaged)
2d Random Bond Ising Model (RBIM) on Nishimori Line

ZRBIM = E e HRBIM  Hppru=—) (Kpmd'sjsises + Kang'sissirae)

Sj,t:il Jst
Tpy Tlq = £1 np = —1; w/ prob p
Nishimori condition e =—1; w/ prob g
e r =p/(1-p) e *K1=g/(1-q) ,
(gives enhanced symmetry) (Z3 x Sy,)/Z2 t Kq
Kp

lim Z, = lim Z%5,,

n—1l m—0 .
Duality: Low-T expansion for RBIM equals high-T 2l
expansion for (n-1) flavor Ising model. N

Bzl " Nishimori line

FM of 2d RBIM is PM phase (n-1)-flavor Ising model — "recovery is possible -

0 005 0.10 0.15 0.20 025 0.30 035 0.40 045 050

PM phase of 2d RBIM is FM phase of (n-1)-flavor Ising model — “information P
O/ AEm@O
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Another example: 2d Toric Code w/ X-noise and faulty/weak
measurements via “stabilizer expansion”

n-1 Flavor 3d Ising model

n _Hn

{UO‘} a=1 a=1

Phase Diagram p=noise strength
g=“weakness” of measurement

Noisy/weak-measurements

0 O > Jp :Jq (P=q)
PM FM

i 2. = e 20
n—1 = m—0 3dRG

Duality: 3d Random Plaquette Ising-Gauge theory dual to (n-1) flavor Ising model.
(Dennis et. al. 2001)

Perimeter-law phase of 3dRG is PM phase of (n-1)-flavor Ising model — "recovery is possible”
Area-law phase of 3dRG is FM phase of (n-1)-flavor Ising model — “information is lost”

C/ QAEmEm®O
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“Stabilizer Expansion” general for stabilizer codes

Other stabilizer codes w/ noise and faulty/weak
measurements in stabilizer expansion:

(1) 2d Repetition Code w/ X-errors w/ faulty/weak measurements:
Maps to 3d (n-1) Flavor Z, Gauge Theory (dual to the 3d RBIM)

(2) Toric code w/ Y-errors and faulty/weak measurements:
Maps to (n-1) Flavor (2+1)d quantum Xu-Moore model — has a transition

(3) XZZX model...

C/ QAEmEm®O
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Retain only measurement record

pm = Tropom = ) Pm|m)(m|

L T-1

i o l—0oj 105t 2 l—0oj, 2

pm(T) = Ze . )H H Zﬁ/fj,t it ZJ(VIj,T i
o g=lrt=1

Hy(0) = H(0) = Jg ) o

2d Ising model w/ field on final time slice » X

C/ QAEmEm®O
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Distinguish flipped domain of spins,
from measurement record?

Add domain to initial state ]][[ 111 [ 1]

00.+(0) = X,rpo(0)X, X _HXJ'

Run dynamics fortime T, P M,r (T)

Define relative entropy (KL divergence) | D(pn||parr) = Trpar log(par/par,r)

(and Renyi version) D(") — - log Hpni_l
n—1 " Trompi,

.- -
Z'”""':Trp?/f:ze E H+—ZH+ )+ He(]] o)
{O-cx} a=1

C/ QAEmEm®O
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Relative entropy for flipped domain

Spin-spin correlator in first time slice (and one replica)

1 (1) (1) = ~H,
Dy = 1—n log(ag,107.1)+ D= = {;} Oe
PM Phase; Measurements “detect” flipped domain
t, 11111

Do('*n) ~ |T|/€ Grows with r,

FM Phase; Measurements cannot “detect” flipped domain I l— X

D,,(ﬂn) ~ const Constant at large r r

C/ QAEmEm®O
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Full Real time Quantum Dynamics expressed
as classical stat models in space timel!!!

Classical stat mech models have positive Boltzmann weights
(2d RBIM, say, or (n-1) flavor Ising model in stabilizer expansion)

This Huge simplification is very surprising

Too good to be true...

For generic noisy dynamics (w/ coherent errors, say)
“classical” simplification can (generally will) break down

C/ QAEmEm®O
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Coherent dynamics plus weak measurements

po — UpQUT with U = e Zi=1 X

M (p) \ J

Ex(p) = UpU"

Weak measurements of stabilizers do not convert
coherent into incoherent noise,

Mr(UpUT) # (M o N)(pq)

C/ QAEmEm®O
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Implications: weak measurement and coherent noise

“Stabilizer expansion” of density matrix breaks down

Dynamics takes density matrix out of stabilizer expansion space,

L
pouT =1)# > W(o) [l " (even after one round)

Under generic dynamics density matrix wanders into operator neverlands...
Dynamics not described by (simple) (n-1) flavor Ising model, nor 2d RBIM

No classical stat mech description: “full” real time Quantum dynamics needed

C/ QAEmEm®O
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Generic coherent dynamics plus weak measurement

Questions:

(1) How to generalize stabilizer expansion?

(2) How to access full non-trivial quantum dynamics?
(3) How to show/calculate an error threshold?

(4) Can measurements distinguish initial flipped domain?

Question 2: For very special measurement dynamics (w/ coherent noise)
Y. Suzuki et. al. arXiv:1703.036712) mapped “error-threshold”
stat mech model into RBIM w/ complex coupling constants,
used Majorana mapping to obtain a phase transition

C/ QAEmEm®O
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Any QM left if discard measurement results?
(unmonitored noisy/coherent dynamics)

Bath + coherence
[ J “Measure” ZZ weakly, don’t store results
Ezz(p) = ;11 —pP)p+pZ;iZj+1pZ; Zj+1]

Unitary rotation around X-axis

Ex(p) =Uxpll Ux =2

Maximally mixed state is “fixed” point of channel ¢ T c X (1 Q) = [ Q

For any initial state: Maximally mixed at long times  2Q (T -0 OO) = 1g

Goal: Explore competition between noisy and coherent dynamics
giving non-trivial (quantum) approach to trivial steady state

(S. Yan, S. Vijay, MPAF in preparation)

C/ QAEmEm®O
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Finite time dynamics, starting with all spins up, say

Use Double state formalism p — |p>

Take time-continuum limit

1p(T)) = e PHT|p(0)) Non-Hermitian “Hamiltonian” on 2-leg ladder

H=-32Zj118 ZjZjy1 +ig) ;(X; ©1 - 11 Xj) g=0/p

Locally Conserved quantity: [Xj ® X;, Hil=8
Define: u = X; ® X; TP =24; ® Z;
LL;ZI(@ZJ' TJ,:-'::Xj@I

Re-express Hamiltonian
= _ZjT;sz—}-l +i92j7}§c(1 _lu;?)

Ground state T; = ,LLE? — i Maximally mixed
e/ AmmMOeO
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Correlator Linear in Density Matrix

Define “correlator” linear in density matrix, initial state all spins up
G(T) =(ll; Z;) =Tr(l; Z;0(T))

Re-express Correlator in Double Hilbert space representation

Gy === (ool =

Quantum complex-transverse field Ising model in 1d

_ &g . T
Hyy=—= 505 W1 09 0,7,

Majorana Fermions: Model has a phase transition at g, = 1

Temporal Behavior in the two phases?

C/ QAEmEm®O
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Universal Behavior of Underdamped oscillations

Focus on L odd and find
G(T) ~ e TelT cos(w,T)

1)

g>1: “Underdamped oscillations” survive L to infinity L i 0 2

g<f1; U.)g — 0 as L to infinity, overdamped

Wy .

C/ QAEmEm®O
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Singularity in Decay rate

Decay rate: singular as g 21* (L to infinity) 83{‘9 ~ (g A 1)_1/2 s =1 |

Decay rate regular forg 2> 1

ar,

Conclusion: Correlator linear in density matrix retains
non-trivial QM upon approaching a trivial steady state,
(competition between coherent and incoherent dynamics)

Questions:
* Behavior in higher dimension?

» Generality of result?
C/QAEmEOO
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Conclusions

Bath

Noisy monitored dynamics in stabilizer codes; a—
Derived “stabilizer expansion”

» Explored information retention/loss employing coherent information
« Stabilizer expansion dual to error configuration expansions (RBIM)
* Generically, stabilizer expansion breaks down, no classical state mech model

Noisy unmonitored system with coherent dynamics Bath + coherence
* Quantum Phase transition in dynamical approach to trivial
steady state, competition between noise and coherent dynamics
Future

« Stabilizer expansion for floquet codes, subsystem codes,...?

* Dynamics of Toric code w/ coherent noise and weak measurements?

* Coherent dynamics + noise w/ non-trivial approach to trivial steady state;
other/higher d examples?

C/ QAEmmO®O
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