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Abstract: Whilst tomography has dominated the theory behind reconstructing/approximating quantum objects, such as states or channels, conducting
full tomography is often not necessary in practice. If one is interested in learning properties of a quantum system, side-stepping the exponential
lower bounds of tomography is then possible. In this talk, we will introduce various learning models for approximating quantum objects, survey the
literature of quantum learning theory and explore instances where learning can be fully time- and sample efficient.
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Motivation: Approximate learnir®

e Learning = approximating a function/object from samples

Peopl|f(z) —h(z)| <€ef 219
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e Learning = approximating a function/object from samples
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Motivation: Approximate learnir]

e Learning = approximating a function/object from samples
Exact learning is often hard (need to see many examples)
Very natural scenario (nature)

Interested in sample and time complexity of learning

Ponpl|f(z) —h(z)| < e >1-9
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Motivation: Approximate learnir®

e Learning = approximating a function/object from samples

Exact learning is often hard (need to see many examples)

Very natural scenario (nature)

Interested in sample and time complexity of learning
1
e Hardness of learning certain objects
e Informs us on algorithmic design
Two frameworks that dominate classical learning literature:

e PAC Learning

e Agnostic Learning
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PAC/Agnostic Learning
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PAC/Agnostic Learning

Goal: Algo must output a hypothesis function that is “close” to the target function

Ponplh(z) # f(@) < €

Given access to samples {(x;, f(x;))}ix,

m = (2" /¢)

(Boolean)

Hanneke, Steve. "The optimal sample complexity of PAC learning." Journal of Machine Learning Research 17, no. 38 (2016): 1-15.
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Learning quantum states

Full state tomography
Given copies (or “samples”) p®™

Output O s.t.

lp = ol <€

m = 0(2°")

O'Donnell, Ryan, and John Wright. "Efficient quantum tomography." In Proceedings of the forty-eighth annual ACM symposium on Theory of
Computing, pp. 899-912. 2016.
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Learning quantum states

XM

Given samples: p and promised that it is a stabiliser state, p = |p)X |

m = poly(n)
I

Time = poly(n)

Rocchetto, Andrea. "Stabiliser states are efficiently PAC-learnable." arXiv preprint arXiv:1705.00345 (2017).
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Learning quantum states

XM

and promised that it is a stabiliser state, p = |p)¢|

Given samples: p

Lemma 1. Let E = (I + P)/2 be a POVM measurement associated to a Pauli operator P and
p an n-qubit stabiliser skate then Tr(Ep) can only take the following values {0,1/2,1} and:

if Tr(Ep) =1 then P is a stabiliser of p;
if Tr(Ep) = 1/2 then neither P nor — P is a stabiliser of p;
if Tr(Ep) =0 then — P is a stabiliser of p.

Rocchetto, Andrea. "Stabiliser states are efficiently PAC-learnable." arXiv preprint arXiv:1705.00345 (2017).
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Learning quantum states

XM

Given samples: p and promised that it is a stabiliser state, p =1|p)X¢|

Lemma 1. Let E = (I + P)/2 be a POVM measurement associated to a Pauli operator P and
p an n-qubit stabiliser state then Tr(Ep) can only take the following values {0,1/2,1} and:

if Tr(Ep) =1 then P is a stabiliser of p;
if Tr(Ep) = 1/2 then neither P nor — P is a stabiliser of p;
if Tr(Ep) =0 then — P is a stabiliser of p.

With access to samples, (Ei, Tr[E;p]), the “labels” tell us if P; is in stab(|¢))

With enough samples, Gaussian elimination to find enough indep generators

Rocchetto, Andrea. "Stabiliser states are efficiently PAC-learnable." arXiv preprint arXiv:1705.00345 (2017).
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Learning quantum states

XM

Given samples: p and a set of known states S = {0;}, output a o; € S

s.t.

lp = 0jllm = minges|lp = ollp,

2

If S is the set of all possible stabiliser states, S = {Ui}?;l
I

m = O(n?/e?)

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Predicting many properties of a quantum system from very few measurements." Nature
Physics 16, no. 10 (2020): 1050-1057.
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Learning quantum states

XM

Given samples: p and a set of known states S = {0;}, output a o; € S

s.t.

lp = 05l = minges|lp = ollp,

If S is the set of all possible stabiliser states, S = {o; le

Time ~ poly(n) (promise)

Grewal, S., Iyer, V., Kretschmer, W., & Liang, D. (2023). Improved stabilizer estimation via bell difference sampling. arXiv preprint arXiv:2304.13915.
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Learning quantum channels

S is the set of unital channels?

Given N®™ and a set of known channels S = {i;}, output a U; € S s.t.

IV = U], < minyes|N —Ul|, + ¢

Cheng, Hao-Chung, Nilanjana Datta, Nana Liu, Theshani Nuradha, Robert Salzmann, and Mark M. Wilde. "Sample complexity of quantum
hypothesis testing." arXiv preprint arXiv:2403.17868 (2024).
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Learning quantum states

lp— ol <€ m = ©(2°")

lp — 0jllp & minges|lp — ol g m = Q(n?/e*)

What about S as the set of Gaussian states or Matchgate states?
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Learning quantum channels

S is the set of unital channels?

Given N®™ and a set of known channels S = {i;}, output a U; € S s.t.

IN = Usll, < mingeslIV — U, + ¢

Cheng, Hao-Chung, Nilanjana Datta, Nana Liu, Theshani Nuradha, Robert Salzmann, and Mark fl. Wilde. "Sample complexity of quantum
hypothesis testing." arXiv preprint arXiv:2403.17868 (2024).
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Learning properties of quantum ©

Full state tomography:

maxg|Tr[Ep| —Tr[Eo]| < e
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Learning properties of quantum L

Given samples: p®m and {FE1, Es, ---aEM}, output O s.t.

Tx[E;p| — Tr[Eio]| <€ Vi

Shadow tomography
m = poly(log(M),n,1/€) *

Time = exp(n)

Aaronson, Scott. "Shadow tomography of quantum states." In Proceedings of the 50th annual ACM SIGACT symposium on theory of computing, pp.
325-338. 2018.
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Learning properties of quantum -

. I
Given samples: p®m and { Py, Ps, ..., Prpr}, output o s.t.

|'Tx[P;p| — Tr[Pio]| <€ Vi

Shadow tomography for local Pauli operators
m = poly(log(M),1/e)

Time = poly(n)

Huang, Hsin-Yuan, Richard Kueng, and John Preskill. "Information-theoretic bounds on quantum advantage in machine learning." Physical Review
Letters 126, no. 19 (2021): 190505.
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Quantum PAC/Agnostic Learnir

Triply efficient shadow tomography

Robbie King*' David Gosset*# Robin Kothari*  Ryan Babbush*

May 1, 2024

Abstract

that a shadow tomography protocol is triply efficient if it is sample- and time-efficient,

and only employs measurements that entar

- : ied b Given copies of a quantum state p, a shadow tomography protocol aims to learn all
arcet obiec T ; :
T(ll g(,t O ).] (,(Jt r Ep expectation values from a fixed set of observables, to within a given precision ¢. We say

e a constant number of copies of p at a time

T'he classical shadows protocol based on random s
ient for the set of local Pauli observables. This and

single-copy Cl

le-copy measurements is triply
ther protocols based on random
rd measurements can be understood as arising from fractional colorings
of a graph ( t encodes the commutation structure of the set of observables. Here we
describe a framework for two-copy shadow tomography that uses an initial round of Bell
measurements to reduce to a fractional colc

ing problem in an induced subgraph of &
with bounded clic umber. This col

ing problem can be addressed using techniques
from graph theory known as chi-boundedness. Using this framework we give the first
triply efficient shadow tomography scheme for the set of local fermionic observables
which arise in a broad class of interacting fermionic systems in physics and chemistry
We also give a triply efficient scheme for the set of all n-qubit Pauli observables. Our
protocols for these tasks use two-copy measurements, which is necessary: sample-cfficient
schemes are provably impossible using only single-copy measurements. Finally, we
give a shadow tomography protocol that compresses an n-qubit quantum state into a
poly(n)-sized classical represe

tion, from which one can extract the expected value of
any of the 4" Pauli observabl

in poly(n) time, up to a small constant error
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Conclusion:

There is a lot of freedom in quantum learning theory
Changing a learning task could enable efficiency, or hardness
Duality of learning (cryptography)

Many open questions in shadow tomography for states, quantum

PAC learning, channel learning etc.

There is room to exploit states with specific structure, which

seems relatively unexplored
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Thank you!

amira@Qcwi.nl
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