Title: The how and why of translating between the circuit model and the one-way model of quantum computing

Speakers: Miriam Backens

Collection: Foundations of Quantum Computational Advantage

Date: May 03, 2024 - 11:15 AM

URL: https://pirsa.org/24050004

Abstract: In the one-way model of measurement based quantum computing, unlike the quantum circuit model, a computation is driven not by unitary gates but by successive adaptive single-qubit measurements on an entangled resource state. So-called flow properties ensure that a one-way computation, described by a measurement pattern, is deterministic overall (up to Pauli corrections on output qubits). Translations between quantum circuits and measurement patterns have been used to show universality of the one-way model, verify measurement patterns, optimise quantum circuits, and more. Yet while it is straightforward to translate a circuit into a measurement pattern, the question of algorithmic "circuit extraction" -- how to translate general measurement patterns with flow to ancilla-free circuits -- had long remained open for all but the simplest type of flow. In this talk, we will recap the one-way model of quantum computing and then explain how the problem of circuit extraction was resolved using the ZX-calculus as a common language for circuits and measurement patterns. We also discuss applications.

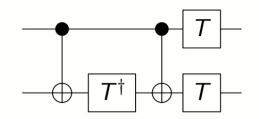
The how and why of translating between the circuit model and the one-way model of quantum computing

Miriam Backens (they/them) Inria & Loria miriam.backens@inria.fr

FoQaCiA workshop, 3 May 2024

Two models of quantum computation

quantum circuit model



[Deutsch 1989]

- \blacktriangleright initialise state $|0 \dots 0\rangle$
- computation driven by unitary gates
- read out data using computational basis measurements

one-way model (MBQC)

 $X_3^{s_2} M_2^{XY,\beta} Z_3^{s_1} X_2^{s_1} M_1^{XY,\alpha} E_{23} E_{12} N_3 N_2$

[Raussendorf & Briegel 2001]

- initialise entangled resource state (can be independent of computation)
- computation driven by successive adaptive single-qubit measurements
- if goal is state preparation, need
 Pauli gates as correction at end

Motivation

Translation between models

- circuit to MBQC is straightforward
- MBQC to circuit with ancillas is also straightforward

Question 1: How to translate any (suitably deterministic) MBQC into an ancilla-free circuit?

Rewriting MBQCs

- optimisation (of circuits and of MBQC themselves), e.g. computational depth, number of operations,...
- verification
- blind quantum computation

Question 2: What rewrite rules would be useful?

Outline

The one-way model of measurement-based quantum computing

A common formalism for circuits and MBQC

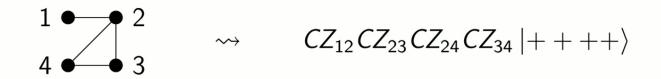
Translation and rewriting

Conclusions

Resource states for the one-way model

The resource states are graph states defined by simple graphs G = (V, E):

- For each vertex in V, a qubit prepared in state $|+\rangle$.
- ► For each edge in *E*, a CZ gate.



All graph states are **stabiliser states**: eigenstates of certain tensor products of Pauli matrices.

Measurements and corrections

Measurements are constrained to three planes of the Bloch sphere spanned by two of the Pauli operators: XY, XZ and YZ.

- \blacktriangleright Each measurement has an associated angle α .
- Pauli measurements may be treated separately.

Desired and **undesired** measurement outcomes are related by Pauli matrices, e.g.

$$\ket{+_{XY,lpha}} = rac{1}{\sqrt{2}} (\ket{0} + e^{ilpha} \ket{1}) \qquad \qquad \ket{-_{XY,lpha}} = rac{1}{\sqrt{2}} (\ket{0} - e^{ilpha} \ket{1}) = Z \ket{+_{XY,lpha}}$$

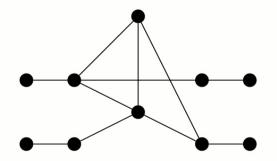
Correction strategy: use **stabiliser property** of graph state to turn undesired outcome into desired one by applying Paulis to other qubits.

Must have trivial effects on all qubits that are already measured.

Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

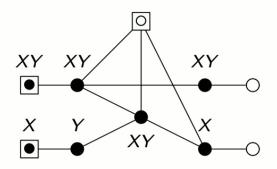
An MBQC has a robustly deterministic implementation if and only if the underlying labelled open graph has flow.



Determinism and flow properties

Theorem [Browne et al. 2007, Mhalla et al. 2022]

An MBQC has a robustly deterministic implementation if and only if the underlying labelled open graph has flow.



A flow consists of

- a partial order over the vertices,
- and a correction function, satisfying certain compatibility conditions.

Theorem [de Beaudrap 2008; Mhalla & Perdrix 2008; B. et al. 2021; Simmons 2021] Flows can be found in polynomial time.

Outline

The one-way model of measurement-based quantum computing

A common formalism for circuits and MBQC

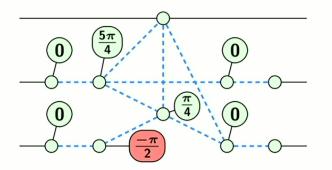
Translation and rewriting

Conclusions

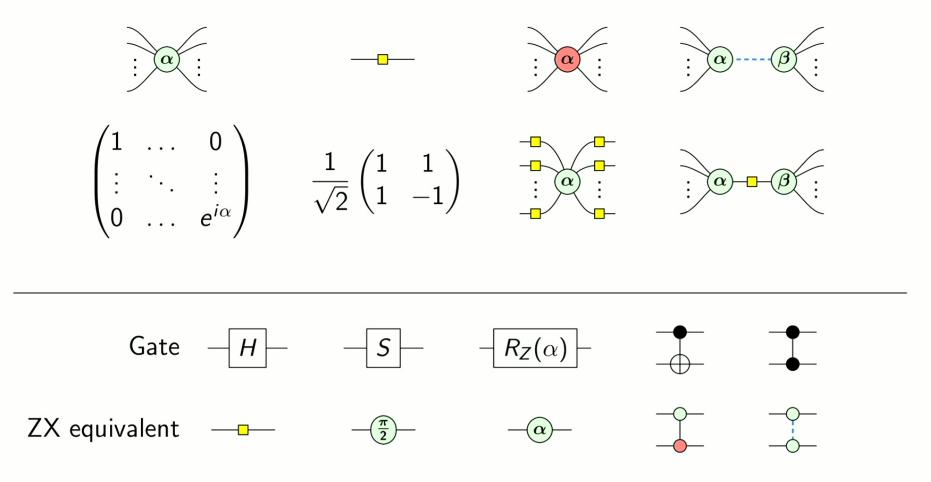
The one-way model in ZX-notation

An MBQC is represented in the graphical ZX-notation as follows:

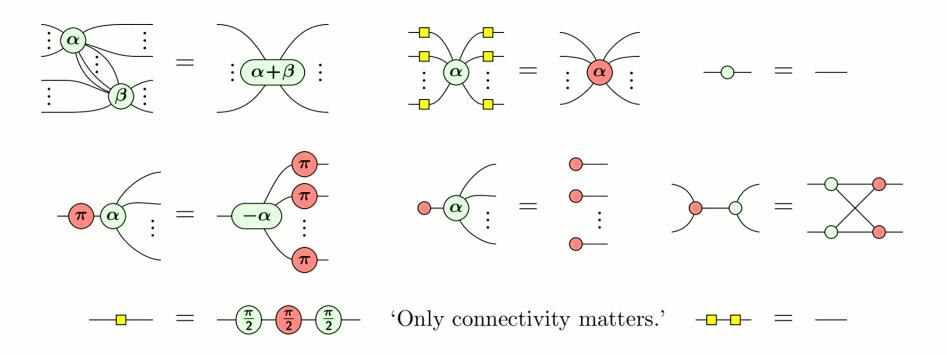
- green vertices with one outgoing wire each, connected by blue dashed edges, for the graph state,
- additional wires for the inputs, and
- ► additional vertices connected to some of the outgoing wires for the measurements: $XY \rightsquigarrow -\alpha$ $XZ \rightsquigarrow -\frac{\pi}{2} \alpha$ $YZ \rightsquigarrow -\alpha$



ZX generators and circuits in ZX-notation

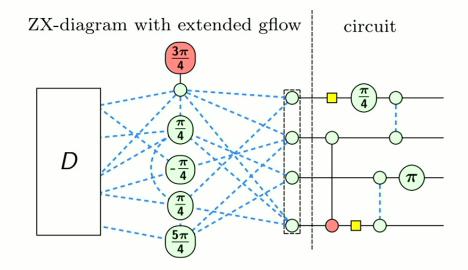


Sound and complete ZX-calculus rewrite rules (up to scalars)



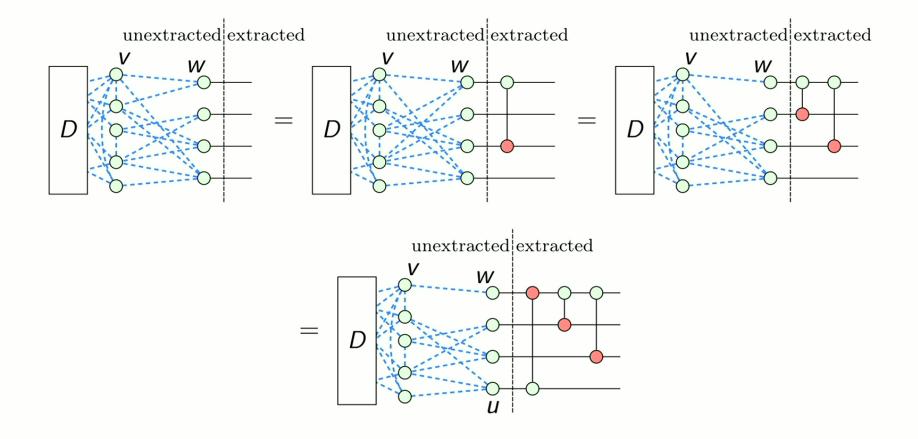
This set is complete for the stabiliser ZX-calculus [B. 2014], can find overview over different complete rule sets in [van de Wetering 2021].

Ancilla-free circuit extraction: overview

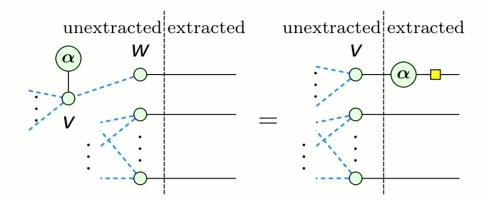


[Duncan et al. 2020; B., Miller-Bakewell, Felice, Lobski, van de Wetering 2021; Staudacher 2023]

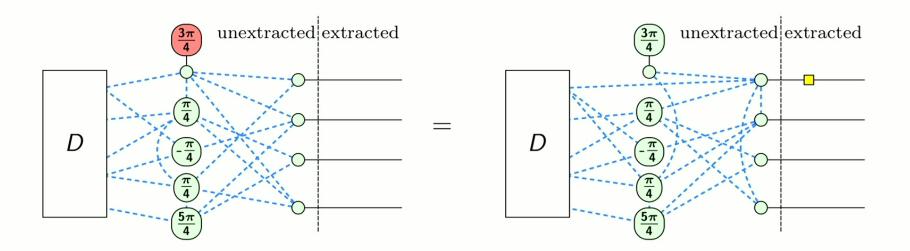
Simplify connections between frontier and unextracted layer



Extract a maximal vertex



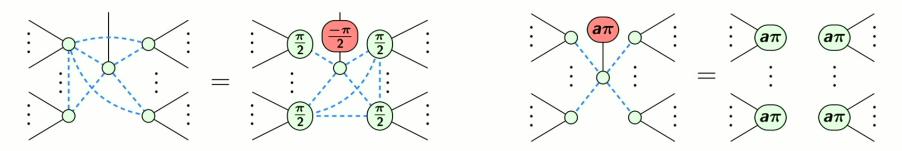
If needed, change measurement type



Flow-preserving rewrite rules for the stabiliser ZX-calculus

Local complementation

Z-deletion/insertion

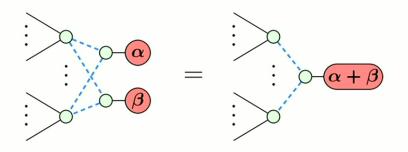


Theorem [McElvanney & B. 2023]

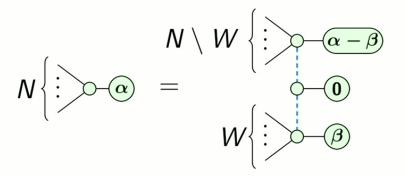
Suppose D and D' are two stabiliser ZX-diagrams with flow that both represent the same linear map. Then one can be rewritten into the other using local complementation, Z-insertion, and Z-deletion.

Further flow-preserving rewrite rules

Phase gadget fusion/splitting



Vertex splitting/fusion



Applications of flow-preserving rewriting

Optimisation

- ► *T*-count [Duncan et al. 2020]
- two-qubit gate count [Staudacher et al. 2022]

Blind quantum computing

more resource-efficient protocol for scenario with two non-communicating quantum servers [Cao 2023]

Computational complexity of reasoning with ZX-calculus

- circuit extraction from arbitrary ZX diagram is #P-hard [de Beaudrap et al. 2022]
- circuit extraction from ZX diagrams with flow is in P

Summary and outlook

It is useful to:

- translate between one-way measurement patterns and circuits
- rewrite measurement patterns (while preserving interpretation & property of having flow)
- employ ZX-calculus as a common language and to visualise graph structure

Further work

- complete set of flow-preserving rewrite rules
- extra conditions for some rules for different types of flow
- going beyond the current framework of flow

Thank you!