Title: Energy and speed bound in GPTs - VIRTUAL
Speakers: Lorenzo Giannelli
Series: Quantum Foundations
Date: April 25, 2024-9:00 AM
URL: https://pirsa.org/24040116
Abstract: Information-theoretic insights have proven fruitful in many areas of quantum physics. But can the fundamental dynamics of quantum systems be derived from purely information-theoretic principles, without resorting to Hilbert space structures such as unitary evolution and self-adjoint observables? Here we provide a model where the dynamics originates from a condition of informational non-equilibrium, the deviation of the system's state from a reference state associated to a field of identically prepared systems. Combining this idea with three basic information-theoretic principles, we derive a notion of energy that captures the main features of energy in quantum theory: it is observable, bounded from below, invariant under time-evolution, in one-to-one correspondence with the generator of the dynamics, and quantitatively related to the speed of state changes. Our results provide an information-theoretic reconstruction of the Mandelstam-Tamm bound on the speed of quantum evolutions, establishing a bridge between dynamical and information-theoretic notions.

Zoom link

Energy and speed bound in GPTs

L. Giannelli \& G. Chiribella

April 2024

Energy in Quantum Theory

- Energy is the expectation value of the Hamiltonian

$$
\langle\psi| H|\psi\rangle=E
$$

- Hamiltonian \equiv generator of reversible evolutions

$$
i \hbar \frac{d}{d t}|\psi\rangle=H|\psi\rangle
$$

- This dual role of the Hamiltonian is not an accident! Rather it is intrinsecally connected with the quantum formalism [1]
[1] E. Grgin and A. Petersen, Journal of Mathematical Physics 15, 764 (1974)

Energy in informational terms

- Despite a central role in quantum mechanics, energy is often neglected in information-theoretic derivation
- Operational theories focus on statistical predictions rather than dynamics

Reconstruct quantum dynamics from
informational principles

An informational perspective on the dynamics

Dynamical evolution is triggered by information non-equilibrium.

We can picture a field, composed of identical bosons.
A particle crossing the field evolves if and only if it is in a different state

Quantum collision models

$$
\text { if } \mathcal{S}_{\pi / 2}=\text { Swap }
$$

$\mathcal{C}_{\tau} \circ \ldots \circ \mathcal{C}_{\tau}$ approximate the unitary evolution $e^{-i \sigma t} \cdot e^{i \sigma t}$ by applying in sequence the operation $\mathcal{C}_{\boldsymbol{\tau}}$
[1] S. Lloyd, M. Mohseni, and P. Rebentrost, Nature physics 10, 631 (2014)

Collision models in the continuous-time limit

Collision models in the continuous-time limit

Collision models in the continuous-time limit

Outline

1. Introduction of the framework:
a) GPTs
b) generalized collision models
c) our assumptions
2. Derivation of a observable - generator correspondence:
a) state - generator
b) observable
3. Derivation of an operational speed bound

Operational framework...

L. Hardy, Quantum theory from five reasonable axioms (2001), arxiv:quant-ph/0101012
J. Barrett, Phys. Rev. A 75, 032304 (2007)
H. Barnum, J. Barrett, M. Leifer, and A. Wilce, Phys. Rev. Lett. 99, 240501 (2007)

Operational framework...

L. Hardy, Quantum theory from five reasonable axioms (2001), arxiv:quant-ph/0101012
J. Barrett, Phys. Rev. A 75, 032304 (2007)
H. Barnum, J. Barrett, M. Leifer, and A. Wilce, Phys. Rev. Lett. 99, 240501 (2007)

... combined with probability

L. Hardy, Quantum theory from five reasonable axioms (2001), arxiv:quant-ph/0101012
J. Barrett, Phys. Rev. A 75, 032304 (2007)
H. Barnum, J. Barrett, M. Leifer, and A. Wilce, Phys. Rev. Lett. 99, 240501 (2007)

... combined with probability

L. Hardy, Quantum theory from five reasonable axioms (2001), arxiv:quant-ph/0101012

$$
\rho_{i}=\left(\begin{array}{c}
p_{1}^{i} \\
p_{2}^{i} \\
\vdots \\
p_{n}^{i}
\end{array}\right)
$$

J. Barrett, Phys. Rev. A 75, 032304 (2007)
H. Barnum, J. Barrett, M. Leifer, and A. Wilce, Phys. Rev. Lett. 99, 240501 (2007)

GPT framework

- A system \mathcal{S} is a finite dimension real vector space
- A state ρ is an element of a convex set $\subset \mathcal{S}$
- A measurement is a collection of linear functional $\left\{e_{j}\right\}$ such that $\sum_{j} e_{j}(\rho)=1$;
- An effect is an element in a measurement: a linear functionals over the state space with value in $[0,1]$
- A (reversible) transformation is an (invertible) linear map between state spaces

GPT framework

- A system \mathcal{S} is a finite dimension real vector space
- A state ρ is ar

We assume

- the state and effect spaces,
- the set of transformations, to be CONVEX and CLOSED
- An effect is ar space with va

$$
{ }_{j} e_{j}(\rho)=1 ;
$$

the state

- A measureme

What is already there about the dynamics?

From the GPT framework ONLY, we can go as far as identifying

- Reversible transformations as a subgroup of SO(N)
- The generators of reversible transformations as skew-symmetric matrices, or a subalgebra thereof

Analogous to unitary and skew-Hermitian matrices in quantum theory

Collision models in GPT

- Same architecture of the quantum version, this time

$\lim _{N \rightarrow \infty} \mathcal{C}_{t / N}^{N}=e^{G_{\sigma} t} \quad$ where $G_{\sigma}:=(I \bigotimes u) G_{t o t}(\cdot \bigotimes \sigma)$

Operational assumptions

3. Diagonalization [4]: every state ρ can be written as a convex sum of perfectly distinguishable pure states
4. Purity Preservation [5]: the parallel or sequential composition of pure states (transformations, effects) is a pure state (transformation, effect)
[4] H. Barnum, M. P. Müller, and C. Ududec, New Journal of Physics 16, 123029 (2014)
[5] G. Chiribella and C. M. Scandolo, Entanglement as an axiomatic foundation for mechanics (2016), arXiv:1608.04459

State-generator duality

For every collision model, the correspondence $\sigma \mapsto G_{\sigma}$ between states and generators is injective:

- if two states generate the same collisional dynamics, then they are the same state
- the maximally mixed state is the only state generating the trivial dynamics

How to define an observable

We take inspiration from $[5,6]$

- Observables are linear combinations of co-existing pure effects:

$$
X=\sum_{i} c_{i} e_{i}
$$

where $c_{i} \in \mathbb{R}$ and
$\left\{e_{i}\right\}_{i=1}^{d}$ is a valid measurement of the theory composed by pure effects
[5] G. Chiribella and C. M. Scandolo, Entanglement as an axiomatic foundation for mechanics (2016), arXiv:1608.04459
[6] G. Chiribella, C. M. Scandolo, L. Giannelli, Sharp theories with purification, in preparation

How to define an observable

We take inspiration from $[5,6]$

- Observables are linear combinations of co-existing pure effects:

$$
X=\sum_{i} c_{i} e_{i}
$$

- Expectation value: $\langle X\rangle_{\rho}:=X(\rho)=\sum_{i} c_{i} e_{i}(\rho)$ for every state ρ
[5] G. Chiribella and C. M. Scandolo, Entanglement as an axiomatic foundation for mechanics (2016), arXiv:1608.04459
[6] G. Chiribella, C. M. Scandolo, L. Giannelli, Sharp theories with purification, in preparation

The generator-observable correspondence

- $G_{\sigma} \leftrightarrow \sigma$, for every state $\sigma=\sum_{i} \mathrm{p}_{i} \psi_{i}$
- $\psi_{i} \stackrel{[3,4]}{\leftrightarrow} e_{\psi_{i}}$ such that $\left\{e_{\psi_{i}}\right\}$ form a measurement
[3] M. P. Müller and C. Ududec, Physical Review Letters 108, 10.1103/physrevlett.108.130401 (2012)
[4] H. Barnum, M. P. Müller, and C. Ududec, New Journal of Physics 16, 123029 (2014)

The generator-observable correspondence

- $G_{\sigma} \leftrightarrow \sigma$, for ever
- $\psi_{i} \leftrightarrow e_{\psi_{i}}$ such t $\boldsymbol{e}^{\boldsymbol{G}_{\boldsymbol{\sigma}} \boldsymbol{t}}$ and $\boldsymbol{e}^{\boldsymbol{\alpha} \boldsymbol{G}_{\boldsymbol{\sigma}} \boldsymbol{t}}$ are different dynamics, for any $\alpha \neq 1$
-ENERGY observable: $H:=\sum_{i} p_{i} e_{\psi_{i}}$

The generator-observable correspondence

- $G_{\sigma} \leftrightarrow \sigma$, for every state $\sigma=\sum_{i} \mathrm{p}_{i} \psi_{i}$
- $\psi_{i} \leftrightarrow e_{\psi_{i}}$ such that $\left\{e_{\psi_{i}}\right\}$ form a measurement
- ENERGY observable:

where $\lambda_{\text {max }}$ is the maximum singular value of the generator G_{σ}

Energy as $\langle H\rangle_{\rho}:=\lambda_{\max } \sum_{i} p_{i} e_{\psi_{i}}(\rho)$

- $\langle H\rangle_{\rho} \geq 0$ for every state ρ
- Performing $\left\{e_{\psi_{i}}\right\}$ estimates the expectation value of the energy
- Energy is invariant under time evolution [Informational equilibrium]:

$$
\text { for } \rho_{t}=e^{G_{\sigma} t} \rho, \quad\langle H\rangle_{\rho_{t}}=\langle H\rangle_{\rho} \text { for every } t
$$

- The whole probability distribution of the ideal energy measurement is invariant:

$$
\text { for } \rho_{t}=e^{G_{\sigma} t} \rho, \quad \mathrm{e}_{\psi_{\mathrm{i}}}\left(\rho_{t}\right)=\mathrm{e}_{\psi_{\mathrm{i}}}(\rho) \text { for every } t, \mathrm{i}
$$

Quantum speed bound

Lower bound on the time necessary for a system to evolve between every two orthogonal states, according to a given Hamiltonian H

An improper uncertainty relation

- Time is not an observable [7]
- Time has to be interpreted as the internal time of the system [8-10]
- the relation expresses the minimum time necessary to evolve accordingly to a certain dynamics -> speed bound

Let's prepare the ground in GTPs

Let D_{t} be a dynamic. For any state ρ we define the quantity

$$
v_{\rho}\left(t, t_{0}\right):=\frac{\left\|D_{t} \rho-D_{t_{0}} \rho\right\|}{t-t_{0}},
$$

as the evolution speed of ρ from t_{0} to t

Bound \#1

Let $U_{t}=e^{A t}$ be a reversible dynamics.
For any state ρ

$$
v_{\rho}\left(t, t_{0}\right) \leq\|A \rho\|=v_{\rho}(t)
$$

the average speed of the evolution is upper bounded by the instantaneous speed $v_{\rho}(t)=\lim _{h \rightarrow 0} v_{\rho}(t+h, t)$

Rearranging the terms...

- $\Delta t=t-t_{0}$,
- $D\left(\rho_{t}, \rho_{t_{0}}\right):=\left\|\rho_{t}-\rho_{t_{0}}\right\| / \sqrt{2}$
then the previous equation gives

$$
\Delta t \geq \frac{D\left(\rho_{t}, \rho_{t_{0}}\right)}{\Delta H}
$$

Quantum speed limit

$$
\Delta \tau \geq \frac{\pi}{2} \frac{\hbar}{\Delta H}
$$

Take-home points

Characterized the dynamics in informational terms:

- Introduced the informational equilibrium assumption
- Derived a generator-observable duality in GPTs
- Derived an operational speed limit

Future works

- Compare toy theories with our informational-dynamical assumptions
- Derive tighter speed limits
- Can we give up strong symmetry? (sharp theories with purification)

Thank you for the attention!

