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Abstract: With the recent construction of quantum low-density parity-check (LDPC) codes with optimal asymptotic parameters, finding methods to
perform low-overhead computation using those constructions has become a central problem of quantum error-correction. In particular, triorthogonal
codes---which admit transversal non-Clifford operations---are of particular interest, but few examples of these codes are presently known. In our
work, we introduce a new family of codes, the quantum rainbow codes, a generalization of pin codes and color codes, that can be constructed from
any chain complex. When applied to the hypergraph product of three complexes, we show that those codes can implement transversal non-Clifford
gates and have improved parameters compared to pin codes. Considering expander graphs with large girth as the input complexes, we can for
instance obtain families of triorthogonal codes with parameters [[n,2A(n{2/3}),2(log(n))]].
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Give colour to your LDPC life with - a/nbow codes™

How generalized colour codes could help us get transversal gates on LDPC codes

Arthur Pesah
University College London (UCL)

Work in progress with Tom Scruby (OIST) and Mark Webster (UCL)
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Overview

We found a family of product-based qLDPC codes
that supports transversal non-Clifford gates




Overview

We found a family of product-based qLDPC codes that
supports transversal non-Clifford gates

(D qLDPC codes Quantum low-density parity-check codes:
— Codes with sparse connectivity
— Geometry doesn’'t matter
— Guarantees the existence of a threshold

Recent progress:
— “Good” quantum LDPC codes exist

L k= (n)
#physical qubits \ hi— @(?’L)

#logical qubits distance
P. Panteleev, G. Kalachev, 2021
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Overview

We found a family of product-based gLDPC codes that
supports transversal non-Clifford gates

(@ gLDPC codes Hypergraph product code (HGP)
— Product of classical codes that gives a

: quantum code
(2 Product-based — Preserve the LDPC property

— Can give constant-rate codes, i.e. k=0(n)

Base ingredient of good qLDPC codes
— By quotienting a HGP code by a group,
choosing the classical codes carefully, and

other tricks, we can get good LDPC codes
J.P. Tillich, G. Zémor, 2009

irsa: 24040115 Page 5/45




Overview

We found a family of product-based qLDPC codes that
supports transversal non-Clifford gates

(D qLDPC codes Transversal gate
— Logical gate obtained by applying a physical
; gate on every qubit individually
@ Product-based — Guaranteed fault-tolerance, low-overhead

@) Transversal non-Clifford Non-Clifford gate (e.g. T, CCZ)

— High-overhead when using non-transversal
methods (e.g. magic state distillation)
— Few codes are known to have them

S. Kubica, M. Beverland, 2013 (color codes) (3D topo codes, Haah's triorthogonal codes)

S. Nezami, J. Haah, 2021 (triorthogonal codes)

irsa: 24040115 Page 6/45




Overview

We found a family of product-based qLDPC codes that
supports transversal non-Clifford gates

(D qLDPC codes
(2) Product-based

@) Transversal non-Clifford

@ Found a family
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Overview

We found a family of product-based qLDPC codes that
supports transversal non-Clifford gates

(D qLDPC codes
(2) Product-based

@) Transversal non-Clifford

@ Found a family
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Rainbow codes

— Generalize colour codes beyond topological
manifolds (works for arbitrary chain complex)
— Generalize pin codes

Our family
— has a global transversal non-Clifford gate
— has best parameters (with best rate)

k=0 (n2/3) d = O (log(n))
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Our approach

3D codes have non-Clifford gates, e.g. transversal CCZ on 3D toric codes, transversal T on 3D
colour codes

3D codes have the potential for addressability, e.g. sheets of CZ on 3D toric codes or sheets of S
gates on 3D colour codes => exponential number of CZ/S representatives

Observation: gates on color codes are much easier to design than gates on toric codes (no need
to find different lattices, just apply a bunch of T and Tt)

Recent paper: found that 3D color codes on hyperbolic manifolds can have addressability for
Clifford gates, global non-Clifford, and constant rate!

Question: can we improve on those properties by considering color codes beyond manifolds?

Sub-question: what properties do we get if we apply color code ideas to product constructions?

G Zhu, S Sikander, E Portnoy, AW Cross, BJ Brown, 2023
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What is a colour code?

Recipe to build a (D-dimensional) colour code:

Start with a (D+1)-colourable (D+1)-valent
cellulation of a manifold

Place qubits on vertices
Place X-stabilizers on 2-dimensional objects

Place Z-stabilizers on D-dimensional objects
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What is a colour code?

Recipe to build a (D-dimensional) colour code:

Start with a (D+1)-colourable (D+1)-valent
cellulation of a manifold

Place qubits on vertices
Place X-stabilizers on 2-dimensional objects

Place Z-stabilizers on D-dimensional objects
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Properties of colour code

1) It unfolds into D copies of the toric code

That is, there exists a local unitary operator that
turns the color codes into D copies of the toric code

Those copies are defined on the so-called shrunk lattices,
defined by shrinking cells of all colours but one

= It encodes 2x as many logical qubits as the toric codes

= |t can be decoded using a toric code decoder on the
shrunk lattices
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Properties of colour code

2) It has many diagonal transversal gates

More precisely, the D-dimensional colour code has

the gate (1 Ow ) (SforD=2; T for D=3 ; etc.)

0 ex@D

Example: in 2D, we first find a bi-colouring of the
vertices, then apply S and St on black and white
vertices respectively.
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Properties of colour code

2) It has many diagonal transversal gates
Key property: bi-orthogonality
|Slm82|:0 mod 2
ISNL|=0 mod 2

For all X-stabilizers S, S, S,, and X-logical L

Interpretation:
1) Applying the S gate on the X stabilizer gives a Y operator on the same support.
It must have even intersection with all the X stabilizers to be a stabilizer itself.
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Properties of colour code

2) It has many diagonal transversal gates

For 3D codes: we require tri-orthogonality

S1NSeNS3l=0 mod 2
|Slm82ﬂL =X(1) mod 2
|SﬂL1ﬂL2:0 mod 2

Key property for magic state distillation
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GOING BEYOND
MANIFOLDS
WITH PIN CODES
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Chain complexes

Generalize the notion of manifold cellulation

Two pieces of data:

1) D vector spaces over Z2: C, C , C, etc., corresponding to “vertices”, “edges”, “faces”, etc.

CU = <rU17 U2, U3, U4>

C’1 — (ela €2, €3, €4>

Cz = (f1)
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Chain complexes

Generalize the notion of manifold cellulation

Two pieces of data:

n on

1) D vector spaces over Z2: C, C , C,, etc., corresponding to “vertices”,

n o

edges”, “faces”, etc.

2) Boundary operators, giving the incidence relation between objects:

(] €1 (%),

0] 0
00%001#02

Example: 6(61) = U1 + V2
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Chain complexes

Generalize the notion of manifold cellulation

Two pieces of data:

n on

1) D vector spaces over Z2: C, C , C,, etc., corresponding to “vertices”,

n o

edges”, “faces”, etc.

2) Boundary operators, giving the incidence relation between objects:

o 0
00%001%102

Example: O(f1) = e1 + e2 + e3 + ey
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Chain complexes

Generalize the notion of manifold cellulation

Two pieces of data:

1) D vector spaces over Z2: C, C , C, etc., corresponding to “vertices”, “edges”, “faces”, etc.

2) Boundary operators, giving the incidence relation between objects:

€1

0] 0
00%001%102

€2
Chain complex condition: J; 0 9;411 = 0

Example: 9y 0 01(f1) = Oo(e1) + do(e2) + o(es) + Oo(ey)
:U1+U2+U2+U3+’03+U4+’U4+U1
=0
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Chain complexes

Combinatorial manifold v.s. general chain complex

Combinatorial manifold General chain complex

Each edge is connected to exactly 2 vertices No such constraint
Intersection of vertex & face = 2 incident edges

Intersection of edge & cell = 2 incident faces
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Pin codes from chain complexes

Different way to obtain a code from basically any chain complex

C. Vuillot, N. Breuckmann, Quantum Pin Codes, 2019
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Chain complexes

Examples:

HT
CSS code: general 2-chain complex S)( Q T SZ

D-dimensional toric code: part of the D-chain complex of a manifold

G 2 ) <2 o 0y 2

D-dimensional color code: built from a (D+1)-valent (D+1)-colourable D-chain complex of
a manifold, with qubits on vertices and stabilizers on faces & D-cells
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Pin codes from chain complexes

Different way to obtain a code from basically any chain complex

Associate a qubit to every triplet (vertex, edge, face).
Each triplet is called a flag

Draw an edge between two flags that only differs by one
object. Colour the edge depending on the type of the
changing object (where it belongs in the chain complex)

C. Vuillot, N. Breuckmann, Quantum Pin Codes, 2019
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Pin codes from chain complexes

Different way to obtain a code from basically any chain complex

Associate a qubit to every triplet (vertex, edge, face).

Each triplet is called a flag /

Draw an edge between two flags that only differs by one
object. Colour the edge depending on the type of the

@

\.

changing object (where it belongs in the chain complex) y
L

b

C. Vuillot, N. Breuckmann, Quantum Pin Codes, 2019
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Pin codes from chain complexes

Different way to obtain a code from basically any chain complex

Associate a qubit to every triplet (vertex, edge, face).
Each triplet is called a flag

Draw an edge between two flags that only differs by one
object. Colour the edge depending on the type of the
changing object (where it belongs in the chain complex)

Associate a stabilizer to every maximal 2-coloured
subgraph

y
N
y
"
e
N

C. Vuillot, N. Breuckmann, Quantum Pin Codes, 2019
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Pin codes from chain complexes

Different way to obtain a code from basically any chain complex

If the vertices and faces of the original chain complex \o /
have even weight, this defines a valid CSS code! ) - |
v N

Observations: ® ./o
1) If the original chain complex comes from a manifold, N
the generated code will be a colour code. .,0 o\.

2) This procedure has been known since Bombin's first
colour code paper, and is called fattening in this context. \o /

SN

C. Vuillot, N. Breuckmann, Quantum Pin Codes, 2019
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Pin codes from chain complexes

Different way to obtain a code from basically any chain complex

If the vertices and faces of the original chain complex o/. \ / .\o
N’ N—"

Observations:
NN
N

have even weight, this defines a valid CSS code!

1) If the original chain complex comes from a manifold,
the generated code will be a colour code. 0\. .,0 o\.

2) This procedure has been known since Bombin’s first |
colour code paper, and is called fattening in this context. e \o /

3) In D-dimension, more flexibility in the choice of ‘\. /’ ’\. /
stabilizers: x & z-coloured maximal subgraphs, with X, z s.1.

rT+z>D+2

C. Vuillot, N. Breuckmann, Quantum Pin Codes, 2019
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Pin codes from chain complexes

Different way to obtain a code from basically any chain complex

If the vertices and faces of the original chain complex
have even weight, this defines a valid CSS code!

Observations:

4) Pin codes can be generalized beyond chain complexes,
to any coloured graph where all edge colours are
represented at each vertex (e.g. constructions based on
group theory).

5) The stabilizers of a pin code are D-orthogonal.
= potential for transversal gates!

C. Vuillot, N. Breuckmann, Quantum Pin Codes, 2019
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Pin codes beyond manifold

)

=




Pin codes beyond manifold

A

This defines a valid family of pin codes
when using periodic boundaries

Question: what is the distance?
Answer: d=4 for all sizes!

All cycles made of two alternating colours
are logicals of the code!
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Pin codes beyond manifold

This defines a valid family of pin codes
when using periodic boundaries

Question: what is the distance?
Answer: d=4 for all sizes!

All cycles made of two alternating colours
are logicals of the code!
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Pin codes beyond manifold

This defines a valid family of pin codes @
when using periodic boundaries
Question: what is the distance?

Answer: d=4 for all sizes!

All cycles made of two alternating colours
are logicals of the code!

In the pin code paper, they experiment with
many examples of code but can't go beyond
d=4. This is the reason!

Question: how to solve this issue?
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Rainbow codes: definitions

Let's consider a flag graph with D+1 colours.
Let C be a subset of colours (e.g. C={blue, green})

Definition (C-rainbow subgraph): subgraph where each vertex is
connected to exactly one edge of every colour in C. By extension, a
k-rainbow subgraph is a C-rainbow subgraph for |C|=k.

Example: a {blue, green}-rainbow subgraph is a cycle with alternating
blue and green edges

Lemma: every maximally coloured subgraph has an even
intersection with all C-rainbow subgraphs, where |C| < D+1

Consequence: we can define a code where all X stabilizers are
2-rainbow subgraphs and Z stabilizers 2-maximal subgraphs

Pirsa: 24040115
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Rainbow codes from hypergraph products

Hypergraph product codes

Why looking at hypergraph product codes?
1) They are simple, and a bridge towards more complicated LDPC codes
2) They have a CZ gate which can be interpreted as folding: direct link to colour codes!
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Rainbow codes from hypergraph products

Hypergraph product codes

|ldea: construct a quantum code from two classical codes

Example: the surface code is a HGP code of two repetition
codes

In general, useful construction for several reasons:

1) The product of LDPC codes is LDPC

2) The product of [[n1, k1, d1]] and [[n2, k2, d2]] codes is an
[n1na, k1ks + ki ks, min(dy, do)]] code

= number of logical qubits often increases

3) Used in the construction of good LDPC codes
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Rainbow codes from hypergraph products

Hypergraph product codes

Note: a hypergraph product can be represented in the following way:
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Rainbow codes from hypergraph products

Hypergraph product codes

Note: a hypergraph product can be represented in the following way:
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Rainbow codes from hypergraph products

Hypergraph product codes

Note: a hypergraph product can be represented in the following way:

Consequence: the intersection of ®
a “vertex” and a “face” of a

hypergraph product must have

exactly two “edges”.

= the colour corresponding to

“changing edge” must be be

present exactly once per vertex

of the flag graph
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Rainbow codes from hypergraph products
. .--\ e
D
i

NS VA,
..,/ \-o

o ®.

W

N A\A,
o-—/ \-o
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Rainbow codes from hypergraph products

Hypergraph product rainbow code, version 1 (“generic”):
e X stabilizers on maximal subgraphs
e Z stabilizers on rainbow subgraphs

Hypergraph product rainbow code, version 2 (“mixed”):
e In2D: X and Z stabilizers on {1,2}, {2,3}-rainbow
subgraph, and {1,3}-maximal subgraphs
e In3D:
o X stabilizers {1,2}, {2,3}, {2,4}, {3,4}-rainbow
subgraphs & {1,4}-maximal subgraphs
o Z stabilizers on {1,2,3}, {2,3,4}-rainbow subgraphs &
{1,2,4}, {1,3,4}-maximal subgraphs

Pirsa: 24040115
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Convention:

color 0 = “changing vertex”
color 1 = “changing edge”
etc.
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Rainbow codes from hypergraph products

Properties

Let /; the number of cycles of the i tanner graph, and D the dimension of the HGP

Generic version Mixed version

#l ogical qubits = 0 Z v k = — 1) Z V) <= Z &
7

1 j;éz
#Logical qubits (3D) k=3 + vy +v3) k=21 +ve+v3) + v1vs + avs + 1113

Distance d = min |v;| d = (2x) min |v;]
1 1

Triorthogonality Yes Yes

Best family (best rate) H’I’Lj ?’2,1/3, log(n)]] Hn, TZQ/S, log(n)]]
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Rainbow codes from hypergraph products

Properties

Let /; the number of cycles of the i tanner graph, and D the dimension of the HGP

Generic version Mixed version

#l ogical qubits o= 0 Z v k = — 1) Z vy <= Z &
7

1 j;éz
#Logical qubits (3D) k=3 + vy +v3) k=21 +ve+v3) + s + avs + V13

Distance d = min |v;| b = (23 lanenha |z
1 1

Triorthogonality Yes Yes

Best family (best rate) H’I’Lj ?’2,1/3, log(n)]] Hn, TZQ/S, log(n)]]

Unfoldable? Yes ?
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Edge contraction of rainbow codes

Idea: by contracting edges of a certain colour, we often obtain a new valid CSS code

Example: we can contract all the blue edges of the 4.8.8. colour code

.\ ./. .\. /.

<

<

< e\
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Discussion

Summary:

1) We found a new generalization of colour codes, that we can study analytically when

starting from hypergraph codes, with better properties than their pin code cousins

2) They are the first product construction with full triorthogonality

3) However, their asymptotic parameters are far from ideal and further work is needed to

improve them

Open questions:

1) What happens if we apply this construction to other product codes (lifted, balanced, etc.)?
2) Can we address logical qubits individually?

3) Isthere a no-go theorem on transversal gates vs parameters for LDPC codes?
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