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Abstract:

The code space of a quantum error-correcting code can often be identified with the degenerate ground-space within a gapped phase of quantum
matter. We argue that the stability of such a phaseis directly related to a set of coherent error processes against which this quantum error-correcting
code (QECC) is robust: such a quantum code can recover from adiabatic noise channels, corresponding to random adiabatic drift of code states
through the phase, with asymptotically perfect fidelity in the thermodynamic limit, as long as this adiabatic evolution keeps states sufficiently
"close" to the initial ground-space. We further argue that when specific decoders -- such as minimum-weight perfect matching -- are applied to
recover thisinformation, an error-correcting threshold is generically encountered within the gapped phase. In cases where the adiabatic evolution is
known, we explicitly show examples in which quantum information can be recovered by using stabilizer measurements and Pauli feedback, even up
to a phase boundary, though the resulting decoding transitions are in different universality classes from the optimal decoding transitions in the
presence of incoherent Pauli noise. This provides examples where non-local, coherent noise effectively decoheres in the presence of syndrome
measurements in a stabilizer QECC.
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Two notions of stapility

&

- Stability of gapped quantum matter: robust gap and robust ground state degeneracy
against local perturbations .
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AliLavasani

Two notions of stability

- Stability of gapped quantum matter: robust gap and robust ground state degeneracy
against local perturbations .

Phase B

- This notion of stability ensures the existence of ) _———f—*‘r’
an extended quantum phase of matter " f
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AliLavasani

Two notions of stapility

» Quantum error correction: quantum information encoded in the ground state subspace
can be recovered perfectly after weak decoherence.
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Two notions of stability

- The goal is to explore the connection between these two notions of stability.

Existence of an extended phase

i

Existence of a non-zero error-threshold
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Two notions of stapility

« Quantum error correction: guantum information encoded in the ground state subspace
can be recovered perfectly after weak decoherence.

» This notion of stability ensures the existence of a non-zero 24}

error-threshold under which perfect recovery is possible. 3-”,‘\ Para ®
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Two notions of stability

- The goal is to explore the connection between these two notions of stability.

Existence of an extended phase

i

Existence of a non-zero error-threshold
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Two notions of stapility

- We would like to know whether the gapped phase can be viewed as an error-correcting
phase with the phase boundary representing the error-threshold for recovery.

0.5 T

Phase B
(Not-Error-Correcting 7)

»

« To this end, we need to define a relevant noise channel.

Phase A
Topological Phase
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Adiabatic Noise

« Let H(A) denote a specific family of perturbations around some local stabilizer code Hamiltonian
HO) =— Z S . Let | w) be an arbitrary state in the ground state subspace of H(0).

I

. Let CZJY denote the adiabatic unitary evolution along the

path y
) =%, |w)

- Given | ), can we recover |y) through error-correction?
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Stability of Gapped Quantum Matter and
Error-Correction with Adiabatic Noise

This work investigates the validity of the following statements:

L

Statement I: If provided with the state | ) = %, |y) and the knowledge of the adiabatic path
¥, one can recover |y) with perfect fidelity in the thermodynamic limit by measuring stabilizers

of H(0) and applying a Pauli feedback.

Statement ll: If provided with the state p = Zp},?c’y ly){y| ?J; one can recover | ) with

Y
perfect fidelity in the thermodynamic limit.
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Reversing Adiabatic Evolution

Example 1: repetition code

AliLavasani

- Consider the repetition code / transverse field Ising chain Hamiltonian

Hg)=- ZZ.EZi+1 . SZXf

1 1
) =11T11:) =—|GHZ+>+—2|GH2_>

V2

@) = U, |w)
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Stability of Gapped Quantum Matter and
Error-Correction with Adiabatic Noise =T

Adiabatic
Ewvolution

This work investigates the validity of the following statements:

A1

Statement I: If provided with the state | ) =, |y) and the knowledge of the adiabatic path
¥, one can recover |y) with perfect fidelity in the thermodynamic limit by measuring stabilizers

of H(0) and applying a Pauli feedback.

Statement ll: If provided with the state p = Zp?%l’ ly){y| ?J; one can recover | ) with

Y
perfect fidelity in the thermodynamic limit.
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Reversing Adiabatic Evolution

Example 1. repetition code

- Consider the repetition code / transverse field Ising chain Hamiltonian

H(g) = - ZZ.EZJH - SZX;'

I 1
w)=1111)=—|GHZ,) + —|GHZ.)
V2

V2

@) = U, )
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Reversing Adiabatic Evolution

Example 1: repetition code

. letting £ bethe MWPM decoder, perfect recovery is possible throughout the ferromagnetic
phase.

« The typical weight of the inferred error is related to

N
the phase order parameter, k = (1 — \/m)g, SO | o

0.975

W, 0.950

in the FM phase (m > 0), the effective error rate is
less than 1/2, which is the threshold of the repetition
code. oo |
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Reversing Adiabatic Evolution

Example 1: repetition code

- Consider the repetition code / transverse field Ising chain Hamiltonian

H(g) = - ZZ.EZHI . SZXf

1 1
W) =1111 ) =——|GHZ,) +——|GHZ )
V2T a2

@) = U, |w)
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Reversing Adiabatic Evolution

Example 1: repetition code

. letting £ bethe MWPM decoder, perfect recovery is possible throughout the ferromagnetic
phase.

« The typical weight of the inferred error is related to

N
the phase order parameter, k = (1 — \/%)5 SO oo

0.975

in the FM phase (m > 0), the effective error rate is . _-4, %

less than 1/2, which is the threshold of the repetition S0 0 10 20 30
code.

(g — ge) L™

0.8

Pirsa: 24040113 Page 17/28



AliLavasani

Reversing Adiabatic Evolution

Example 2: Toric code

« Playing the same game with the perturbed toric code Hamiltonian,

HB)=— Y A~ ). B,+ Y exp(-p ). Z)
0y P 5

Jj€s

- The average infidelity of the probabilistic likelihood

. e Zo
decoderis prop.to, 1 = F ? — 1, where
1

Z,and Z | are the partition function of classical 2d
Ising with/without a domaih wall

- Perfect recovery is possible throughout the topological phase.
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Reversing Adiabatic Evolution

Example 1. repetition code

. letting £ bethe MWPM decoder, perfect recovery is possible throughout the ferromagnetic
phase.

1000 =

« The typical weight of the inferred error is related to

N
the phase order parameter, k = (1 — \/%)E SO 000

U":-) ‘
in the FM phase (m > 0), the effective error rate is o _u‘ o %

less than 1/2, which is the threshold of the repetition
code I (9= 3L
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Reversing Adiabatic Evolution

Example 2: Toric code

« Playing the same game with the perturbed toric code Hamiltonian,

HP)=— Y A= ) B, + ) exp(=B ), Z)
Ky p s

JEs

« The average infidelity of the probabilistic likelihood

Zy
decoderis prop.to, 1 = & ? — 1, where
1

Z,and Z | are the partition function of classical 2d
Ising with/without a domaih wall

- Perfect recovery is possible throughout the topological phase.
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Reversing Adiabatic Evolution

- Whether these observations are more generally true for arbitrary perturbations of gapped
quantum phases is left as an open question...

I

0 Gapped Phase Ac Trivial 0 Gapped Phase A

- MemELs EC Non-EC
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Reversing Adiabatic Noise

- When the adiabatic evolution is unknown, by providing a counter example, we show that the
error correction threshold under an adiabatic noise channel need not coincide with the
phase boundary:

.0 .0 - i
e —i5X; +izX; . %
s 2 2 Adiabatic o (3
H(0) | |€ Hy | |e Misbaic ~s0™)
.'. Error "‘
Co rrection

with H,y denoting the repetition code Hamiltonian. P?;fe

Correction Threshold

A1
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Reversing Adiabatic Evolution

- Whether these observations are more generally true for arbitrary perturbations of gapped
quantum phases is left as an open question...
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Reversing Adiabatic Evolution

Example 1. repetition code

- Consider the repetition code / transverse field Ising chain Hamiltonian

H(g) = - szzm - SZX;'

I 1
w)=1111)=—|GHZ,)+—|GHZ)
T2

V2
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Reversing Adiabatic Evolution

Example 2: Toric code

+ Playing the same game with the perturbed toric code Hamiltonian,

Hp) == Y A= Y B, + ) exp(Zf ). 2)
0y p 5

JEs

« The average infidelity of the probabilistic likelihood

. Zy
decoderis prop.to, 1 — F ? — 1, where
1

Z,and £ are the partition function of classical 2d
Ising with/without a domain wall

- Perfect recovery is possible throughout the topological phase.
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Reversing Adiabatic Noise

- When the adiabatic evolution is unknown, by providing a counter example, we show that the
error correction threshold under an adifibatic noise channel need not coincide with the
phase boundary:

.0 .6 z >,
p— —J;Xr- +E?Xl; o w
— L Z Adiabatic - .
H(g) H = HO € Evolution C t
.'. Error ,:
Correction

with Hj, denoting the repetition code Hamiltonian. e
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oummary

We relate the stability of gapped phase to recovery from adiabatic noise channels

When the adiabatic evolution is known, we study examples where recovery is possible
throughout the phase.

When the adiabatic evolution is not known, we show that the error correction might not be
possible throughout the phase.

We drive conditions Similar to KL conditions which can be used to establish a finite
neighborhood for which recovery from an unwon adiabatic noise is possible.
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