Title: Hardware-efficient quantum computing using qudits

Speakers: Christine Muschik

Series: Perimeter Institute Quantum Discussions

Date: April 17, 2024 - 11:00 AM

URL: https://pirsa.org/24040105

Abstract: Particle physics underpins our understanding of the world at a fundamental level by describing the interplay of matter and forces through gauge theories. Yet, despite their unmatched success, the intrinsic quantum mechanical nature of gauge theories makes important problem classes notoriously difficult to address with classical computational techniques. A promising way to overcome these roadblocks is offered by quantum computers, which are based on the same laws that make the classical computations so difficult. Here, we present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics, involving both gauge fields and matter. This computation is made possible by the use of a trapped-ion qudit quantum processor, where quantum information is encoded in different states per ion, rather than in two states as in qubits. Qudits are ideally suited for describing gauge fields, which are naturally high-dimensional, leading to a dramatic reduction in the quantum register size and circuit complexity. Using a variational quantum eigensolver, we find the ground state of the model and observe the interplay between virtual pair creation and quantized magnetic field effects. The qudit approach further allows us to seamlessly observe the effect of different gauge field truncations by controlling the qudit dimension. Our results open the door for hardware-efficient quantum simulations with qudits in near-term quantum devices.

Zoom link

b

Qudit workshop

9-11 July 2024, Waterloo

Simulating 2D lattice gauge theories on a qudit quantum computer

Michael Meth,¹ Jan F. Haase,^{2,3,4} Jinglei Zhang,^{2,3} Claire Edmunds,¹ Lukas Postler,¹ Andrew J. Jena,^{2,3} Alex Steiner,¹ Luca Dellantonio,^{2,3,5} Rainer Blatt,^{1,6,7} Peter Zoller,^{8,6} Thomas Monz,^{1,7} Philipp Schindler,¹ Christine Muschik^{*},^{2,3,9} and Martin Ringbauer^{*1}

 ¹Universität Innsbruck, Institut für Experimentalphysik, Technikerstraße 25a, Innsbruck, Austria
 ²Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
 ³Department of Physics & Astronomy, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
 ⁴Institut für Theoretische Physik und IQST, Universitä Ulm, Albert-Einstein-Allee 11, D-89069 Ulm, Germany
 ⁵Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, United Kingdom
 ⁶Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, Technikerstraße 21a, Innsbruck, Austria
 ⁷Alpine Quantum Technologies GmbH, Innsbruck, Austria
 ⁸Universität Innsbruck, Institut für Theoretische Physik, Technikerstraße 21a, Innsbruck, Austria

⁹Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada

Particle physics underpins our understanding of the world at a fundamental level by describing the interplay of matter and forces through gauge theories. Yet, despite their unmatched success, the intrinsic quantum mechanical nature of gauge theories makes important problem classes notoriously difficult to address with classical computational techniques. A promising way to overcome these roadblocks is offered by quantum computers, which are based on the same laws that make the classical computations so difficult. Here, we present a quantum computation of the properties of the basic building block of two-dimensional lattice quantum electrodynamics, involving both gauge fields and matter. This computation is made possible by the use of a trapped-ion qudit quantum processor, where quantum information is encoded in d different states per ion, rather than in two states as in qubits. Qudits are ideally suited for describing gauge fields, which are naturally highdimensional, leading to a dramatic reduction in the quantum register size and circuit complexity. Using a variational quantum eigensolver we find the ground state of the model and observe the interplay between virtual pair creation and quantized magnetic field effects. The qudit approach further allows us to seamlessly observe the effect of different gauge field truncations by controlling the qudit dimension. Our results open the door for hardware-efficient quantum simulations with qudits in near-term quantum devices.

https://arxiv.org/abs/2310.12110

Overview

- 1. Introduction
- 2. Using qudits for problems in particle physics
- 3. Simulating both: gauge fields and matter
- 4. Increasing d
- 5. Conclusions

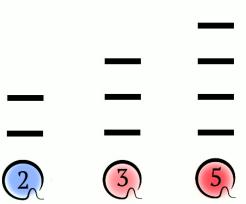
Classical computing today: Almost exclusively based on binary encoding.

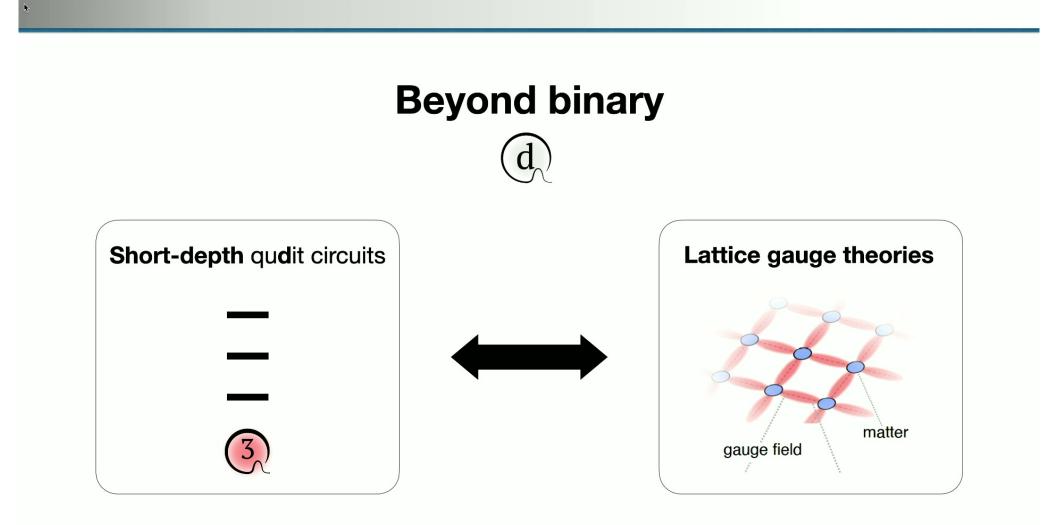
1001101	0.00110010	00				ni.	1101010100	110
1 10 10 11 10 10 11	001001	01	0101	00 11	011000	D1 110	1001000001001	0110
1101	10100	000110	11 0	01		0110	010100	00001 101
12	11011	00001	1010		0101 0	1010100	001110	1011
0000		- 10	10 10 0 00 11 01 01 0 11 00	110010	1000		010110	00111110 10010
00 (10100	01111011	01 00 011 10 10 00 011 01	0100	0		-	11 10 10 11 01 0101
	10010	00111	01001	01 1	10110011010	1001000100	101010	0000 0
0100	00111	10110	10110		11 01 01 00	00 10101	100010	01110 10
1 1101	01011000		00000	0101	000100	110110	111101	01010
10101			10001		01	110101	100101	
101	100010	0 1110	11001	11101	10 00	011010	0100 0	011011 00
100	100111			0101	01		001101	1 - 1
111	110011		and the second second	0 10	01010	0001101	100001	1 100 1
	101010				01101	1100001	010011	1 001
111 (010101	00101	11010	0100	001101	1000011	100111	1 010
			= 1100	11 01 01 01	£11000	0110100	111001	001 01011 10
110	010100	0110	11 110	01 00 10 01	10	- 10		01010010 0
100	011011	0001	1 00	111	0101_0	1010	0001110	00110101
-		1110	0 011	101	0	111010		E 01 00 10 100
000	110100	1110	0 011	1010	100000	1110101	010110	1010100
	010010					0110100	101010	0000010
010	10011		1000110			0000101	100010	0111011(
101 (01000	10101010000	01	1010	000100	1110110	111101	01010010
10011		1010	000	0011		01:0011	101010 00	
10101001		1110			010 00	10 10110	100100001001001	1 011100
00	1001	1100	1 = 11	101	110511010	01001000010	001	1 00 01
		110 0	1010	0	1 11101011	001001		001

Beyond binary

Today's quantum hardware: capable of qudit encoding

- Trapped ions
 Superconducting architectures
 Rydberg atoms in optical tweezers
- Ultracold atoms in optical lattices
- Nuclear spins
- Photonic systems

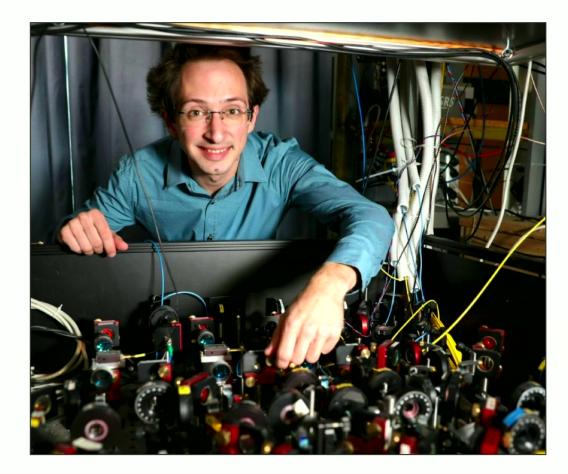




QuDit review article:

Y. Wang, Z. Hu, B. C. Sanders, and S. Kais, Front. Phys. 8 (2020).

Mike Meth



Martin Ringbauer

Gauge theories

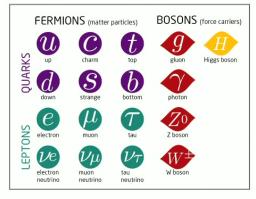
Condensed matter systems

(Frustration, topological order)

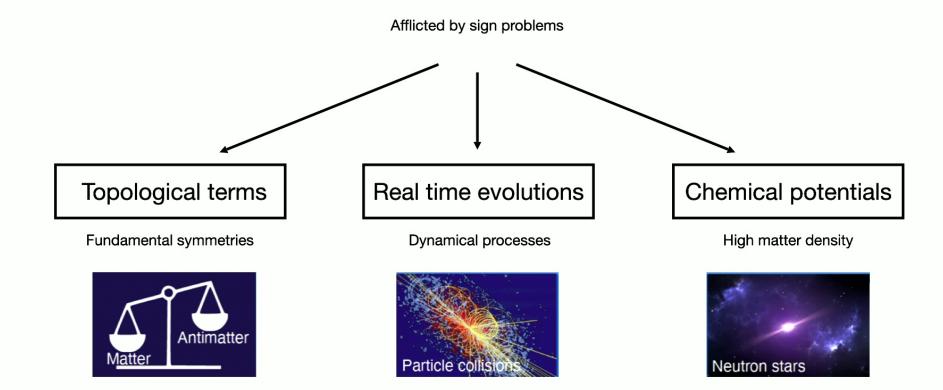
Gauge theories in particle physics

(Quantum Electrodynamics, Quantum Chromodynamics,...)

Standard model of particle physics



Inaccessible to traditional lattice gauge theory



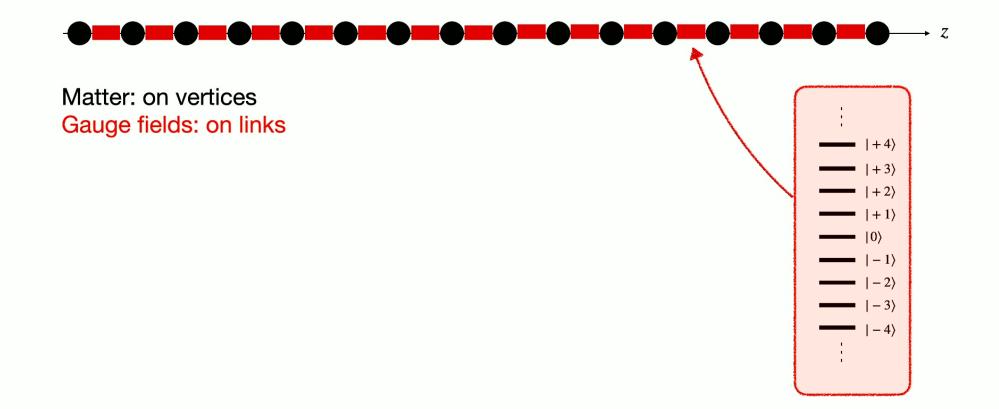
Using qudits for problems in particle physics

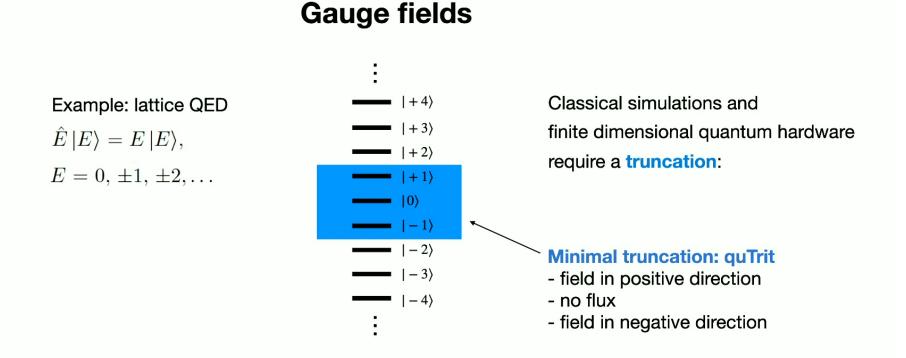
Two major hurdles in quantum LGT calculations

#1: Representing gauge fields

#2: Quantum simulations beyond 1D

Representing gauge fields



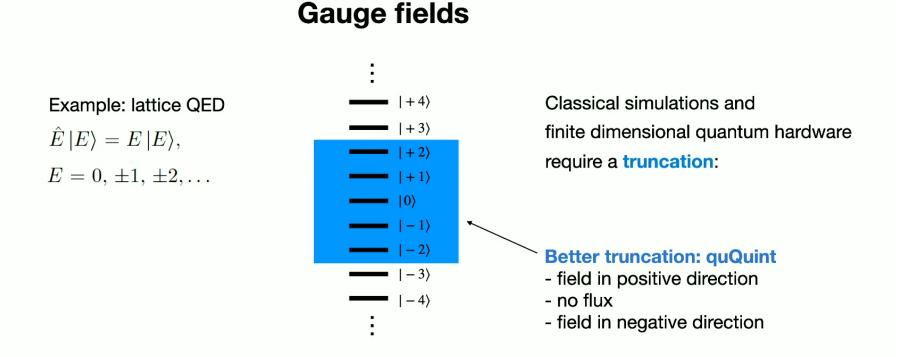


Truncations for bosonic systems:

- Schwinger boson representation ٠
- Holstein-Primakoff-representation
- · Dysen-Maleev transformation
- Highly occupied boson model

Truncations for qubit systems:

$$\begin{array}{ccc} \hat{E} \longmapsto \hat{S}^{z}, & & \\ \hat{U} \longmapsto \hat{V}^{-}, & & \\ \hat{U} \longmapsto \hat{V}^{-}, & & \\ \end{array} \begin{array}{cccc} \begin{bmatrix} 0 & \dots & \dots & 0 \\ 1 & \dots & \dots & 0 \\ 0 & \ddots & \vdots & 0 \\ 0 & \dots & 1 & 0 \end{bmatrix} & \begin{array}{cccc} \text{Alternative:} & & \\ \hat{V}^{-} \equiv \hat{S}^{-}/|l| & \\ & \hat{S}^{-} = \hat{S}^{\mathbf{x}} - i\hat{S}^{y} \end{array}$$



Truncations for bosonic systems:

- Schwinger boson representation ٠
- Holstein-Primakoff-representation
- · Dysen-Maleev transformation
- Highly occupied boson model

Truncations for qubit systems:

$$\begin{array}{ccc} \hat{E} \longmapsto \hat{S}^{z}, & & \\ \hat{U} \longmapsto \hat{V}^{-}, & & \\ \hat{U} \longmapsto \hat{V}^{-}, & & \\ \end{array} \begin{array}{cccc} \begin{bmatrix} 0 & \dots & \dots & 0 \\ 1 & \dots & \dots & 0 \\ 0 & \ddots & \vdots & 0 \\ 0 & \dots & 1 & 0 \\ \end{bmatrix} \begin{array}{cccc} \text{Alternative:} & & \\ \hat{V}^{-} \equiv \hat{S}^{-}/|l| & \\ & \hat{S}^{-} = \hat{S}^{\mathbf{x}} - i\hat{S}^{y} \end{array}$$

Representing gauge fields

Open boundary conditions

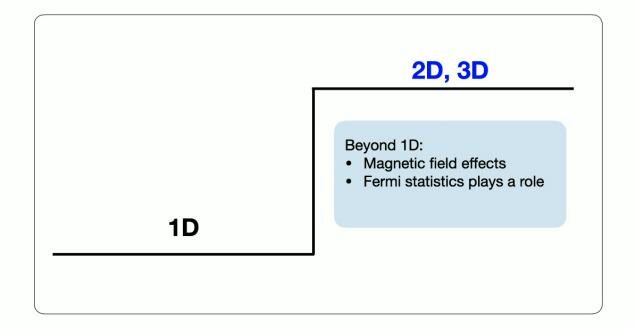
Real-time dynamics of lattice gauge theories with a fewqubit quantum computer

Esteban A. Martinez ⊠, Christine A. Muschik ⊠, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller & Rainer Blatt

Nature 534, 516-519 (2016)

Trapped ion quantum computer

Gauge theories for particle physics beyond 1D

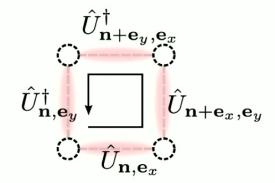


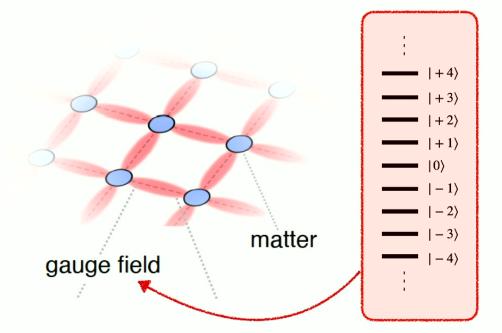
Gauge theories beyond 1D

2D gauge theory

- Not all gauge fields can be eliminated
- i.e. "dynamical" gauge fields

→ Magnetic field effects





Experimental demonstrations Gauge theories for particle physics beyond 1D

- N. Klco, M. J. Savage, and J. R. Stryker, Phys. Rev. D 101, 074512 (2020).
- A. Ciavarella, N. Klco, and M. J. Savage, Phys. Rev. D 103, 094501 (2021).
- S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Phys. Rev. D **104**, 034501 (2021).
- A. N. Ciavarella and I. A. Chernyshev, Phys. Rev. D 105, 074504 (2022).
- S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Phys. Rev. D **106**, 074502 (2022).
- S. A. Rahman, R. Lewis, E. Mendicelli, and S. Powell, "Real time evolution and a traveling excitation in SU(2) pure gauge theory on a quantum computer," (2022), arXiv:2210.11606 [hep-lat].
- A. N. Ciavarella, "Quantum Simulation of Lattice QCD with Improved Hamiltonians," (2023), arXiv:2307.05593 [hep-lat].

Impressive Advances!

(but gauge fields or matter fields are trivial)

Experimental demonstrations

Gauge theories for particle physics, beyond 1D

- N. Klco, M. J. Savage, and J. R. Stryker, Phys. Rev. D 101, 074512 (2020).
- A. Ciavarella, N. Klco, and M. J. Savage, Phys. Rev. D 103, 094501 (2021).
- S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Phys. Rev. D **104**, 034501 (2021).
- A. N. Ciavarella and I. A. Chernyshev, Phys. Rev. D 105, 074504 (2022).
- S. A Rahman, R. Lewis, E. Mendicelli, and S. Powell, Phys. Rev. D **106**, 074502 (2022).
- S. A. Rahman, R. Lewis, E. Mendicelli, and S. Powell, "Real time evolution and a traveling excitation in SU(2) pure gauge theory on a quantum computer," (2022), arXiv:2210.11606 [hep-lat].
- A. N. Ciavarella, "Quantum Simulation of Lattice QCD with Improved Hamiltonians," (2023), arXiv:2307.05593 [hep-lat].

Continuous gauge groups, e.g. U(1), SU(3),...

As opposed to e.g. \mathbb{Z}_2

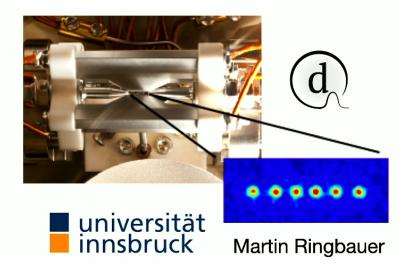
Impressive Advances!

(but gauge fields or matter fields are trivial)

Experimental qudit system

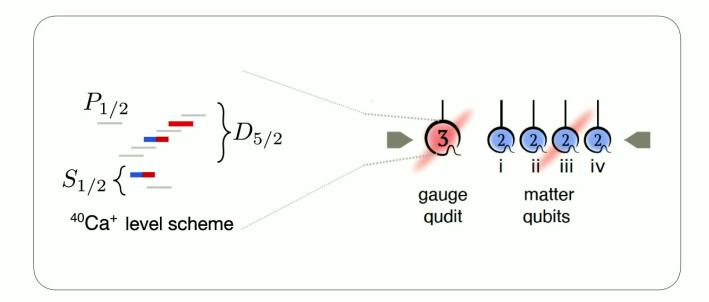
Linear ion-trap quantum processor with all-to-all connectivity

Extending qubit entangling gates to mixed-dimensional qudit systems



M. Ringbauer, M. Meth, L. Postler, R. Stricker, R. Blatt, P. Schindler, T. Monz, Nature Physics 18, 1053 (2022)

Encoding qudits in trapped ions

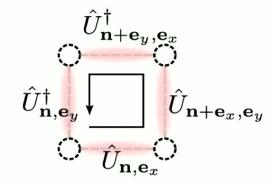


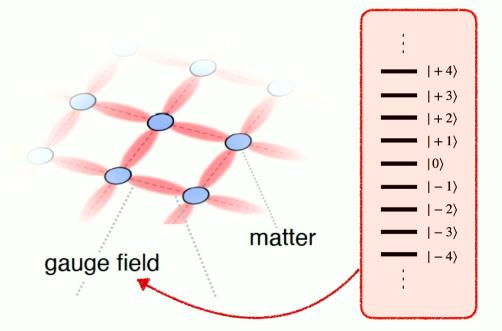
Gauge theories beyond 1D

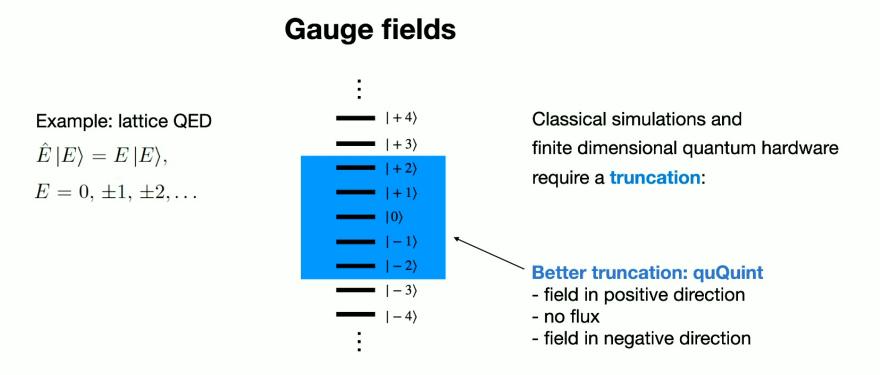
2D gauge theory

- Not all gauge fields can be eliminated
- i.e. "dynamical" gauge fields

→ Magnetic field effects





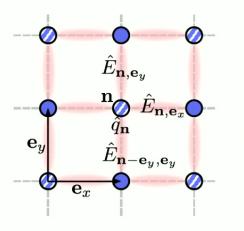


Truncations for bosonic systems:

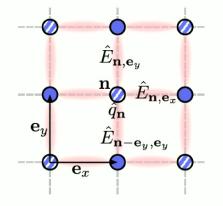
- Schwinger boson representation ٠
- Holstein-Primakoff-representation
- · Dysen-Maleev transformation
- Highly occupied boson model

Truncations for qubit systems:

$$\begin{array}{ccc} \hat{E} \longmapsto \hat{S}^{z}, & & \\ \hat{U} \longmapsto \hat{V}^{-}, & & \\ \hat{U} \longmapsto \hat{V}^{-}, & & \\ \end{array} \begin{array}{cccc} \begin{bmatrix} 0 & \dots & \dots & 0 \\ 1 & \dots & \dots & 0 \\ 0 & \ddots & \vdots & 0 \\ 0 & \dots & 1 & 0 \end{bmatrix} & \begin{array}{cccc} \text{Alternative:} & & \\ \hat{V}^{-} \equiv \hat{S}^{-}/|l| & \\ & \hat{S}^{-} = \hat{S}^{\mathbf{x}} - i\hat{S}^{y} \end{array}$$



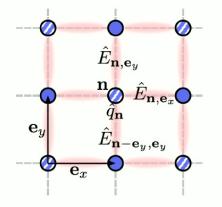
Even $n_x + n_y$ la	ittice sites	Odd $n_x + n_y$ lattice sites		
$\bigcirc \cong \left \downarrow\right\rangle \cong \left e\right\rangle,$	$\hat{q}_{\mathbf{n}} = -1$	$\bigcirc \cong \left \downarrow\right\rangle \cong \left v\right\rangle,$	$\hat{q}_{\mathbf{n}}=0$	
$\bigcirc \cong \left \uparrow\right\rangle \cong \left v\right\rangle,$	$\hat{q}_{\mathbf{n}} = 0$	$\bigotimes \cong \left \uparrow\right\rangle \cong \left p ight angle ,$	$\hat{q}_{\mathbf{n}} = +1$	



$$\hat{H} = g^2 \hat{H}_E + \frac{1}{g^2} \hat{H}_B + m \hat{H}_m + \Omega \hat{H}_k$$

Electric field energy
$$\longrightarrow \hat{H}_E = \frac{1}{2} \sum_{\mathbf{n}} \left(\hat{E}_{\mathbf{n},\mathbf{e}_x}^2 + \hat{E}_{\mathbf{n},\mathbf{e}_y}^2 \right),$$

Magnetic field energy $\longrightarrow \hat{H}_B = -\frac{1}{2} \sum_{\mathbf{n}} \left(\hat{P}_{\mathbf{n}} + \hat{P}_{\mathbf{n}}^\dagger \right), \qquad \hat{P}_{\mathbf{n}} = \hat{U}_{\mathbf{n},\mathbf{e}_x} \hat{U}_{\mathbf{n}+\mathbf{e}_x,\mathbf{e}_y} \hat{U}_{\mathbf{n}+\mathbf{e}_y,\mathbf{e}_x}^\dagger \hat{U}_{\mathbf{n},\mathbf{e}_y}^\dagger.$
Particle rest mass $\longrightarrow \hat{H}_m = \sum_{\mathbf{n}} (-1)^{n_x + n_y} \hat{\phi}_{\mathbf{n}}^\dagger \hat{\phi}_{\mathbf{n}},$
Kinetic energy term $\longrightarrow \hat{H}_k = \sum_{\mathbf{n}} \sum_{\mu=x,y} \left(\hat{\phi}_{\mathbf{n}} \hat{U}_{\mathbf{n},\mathbf{e}_\mu}^\dagger \hat{\phi}_{\mathbf{n}+\mathbf{e}_\mu}^\dagger + \text{H.c.} \right).$
 $\hat{U}_{\mathbf{n},\mathbf{e}_y}^\dagger \underbrace{\hat{P}_{\mathbf{n}}}_{\hat{U}_{\mathbf{n},\mathbf{e}_x,\mathbf{e}_y}} \hat{U}_{\mathbf{n},\mathbf{e}_x,\mathbf{e}_y}^\dagger$

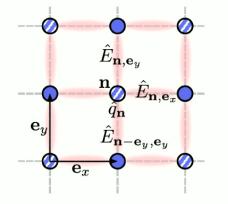


$$\hat{H} = g^2 \hat{H}_E + \frac{1}{g^2} \hat{H}_B + m \hat{H}_m + \Omega \hat{H}_k$$

Classical Gauss law:
$$\nabla \mathbf{E}(\mathbf{r}) - \rho(\mathbf{r}) = 0$$

QED Gauss law:
$$\hat{G}_{\mathbf{n}} |\Psi_{\text{phys}}\rangle = 0,$$

 $\hat{G}_{\mathbf{n}} = \sum_{\mu} (\hat{E}_{\mathbf{n},\mathbf{e}_{\mu}} - \hat{E}_{\mathbf{n}-\mathbf{e}_{\mu},\mathbf{e}_{\mu}}) - \hat{q}_{\mathbf{n}}$



$$\hat{H} = g^2 \hat{H}_E + \frac{1}{g^2} \hat{H}_B + m \hat{H}_m + \Omega \hat{H}_k$$

Electric field energy
$$\longrightarrow \hat{H}_E = \frac{1}{2} \sum_{\mathbf{n}} \left(\hat{E}_{\mathbf{n},\mathbf{e}_x}^2 + \hat{E}_{\mathbf{n},\mathbf{e}_y}^2 \right),$$

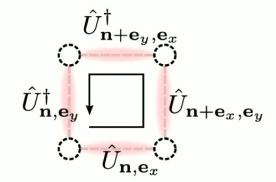
Magnetic field energy $\longrightarrow \hat{H}_B = -\frac{1}{2} \sum_{\mathbf{n}} \left(\hat{P}_{\mathbf{n}} + \hat{P}_{\mathbf{n}}^\dagger \right), \qquad \hat{P}_{\mathbf{n}} = \hat{U}_{\mathbf{n},\mathbf{e}_x} \hat{U}_{\mathbf{n}+\mathbf{e}_x,\mathbf{e}_y} \hat{U}_{\mathbf{n}+\mathbf{e}_y,\mathbf{e}_x}^\dagger \hat{U}_{\mathbf{n},\mathbf{e}_y}^\dagger.$
Particle rest mass $\longrightarrow \hat{H}_m = \sum_{\mathbf{n}} (-1)^{n_x + n_y} \hat{\phi}_{\mathbf{n}}^\dagger \hat{\phi}_{\mathbf{n}},$
Kinetic energy term $\longrightarrow \hat{H}_k = \sum_{\mathbf{n}} \sum_{\mu=x,y} \left(\hat{\phi}_{\mathbf{n}} \hat{U}_{\mathbf{n},\mathbf{e}_\mu}^\dagger \hat{\phi}_{\mathbf{n}+\mathbf{e}_\mu}^\dagger + \text{H.c.} \right).$
 $\hat{U}_{\mathbf{n},\mathbf{e}_y}^\dagger \underbrace{\hat{P}_{\mathbf{n}}}_{\hat{U}_{\mathbf{n},\mathbf{e}_x,\mathbf{e}_y}} \hat{U}_{\mathbf{n},\mathbf{e}_x,\mathbf{e}_y}^\dagger$

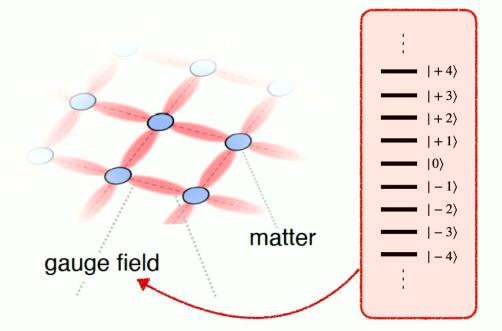
Gauge theories beyond 1D

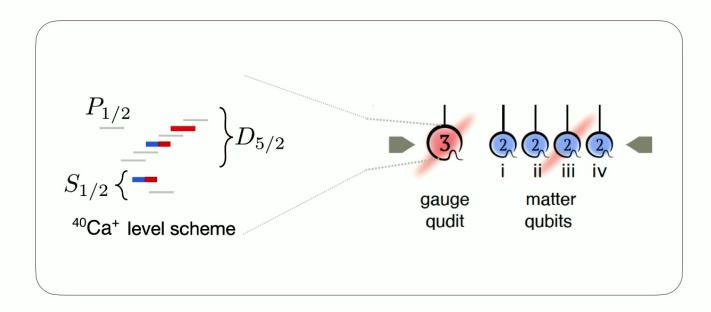
2D gauge theory

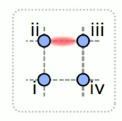
- Not all gauge fields can be eliminated
- i.e. "dynamical" gauge fields

→ Magnetic field effects









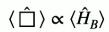
Basic building block: Plaquette

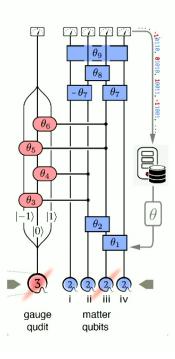
Variational Quantum Eigensolver

Hybrid qubit-quTrit variational circuit

Ground state preparation

Measure plaquette expectation value





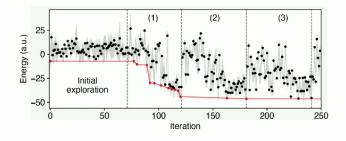
Variational Quantum Eigensolver

Hybrid qubit-quTrit variational circuit

Ground state preparation

Measure plaquette expectation value

 $\langle \, \hat{\square} \, \rangle \propto \langle \hat{H}_{B} \rangle$

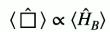


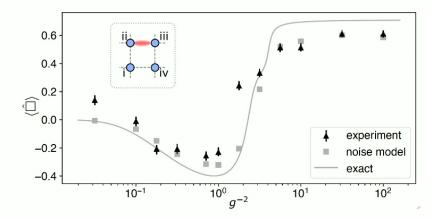
Variational Quantum Eigensolver

Hybrid qubit-quTrit variational circuit

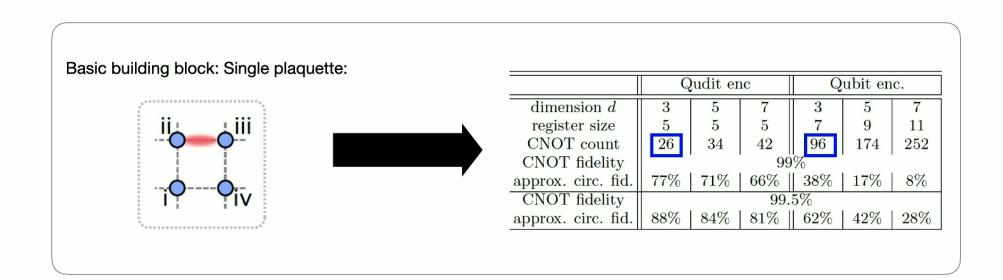
Ground state preparation

Measure plaquette expectation value



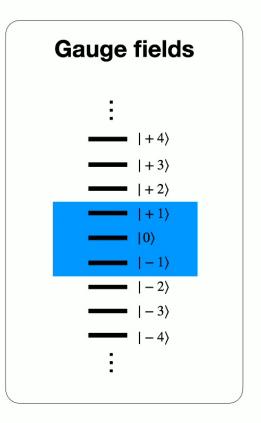


Qudit encoding: short circuits



So far:

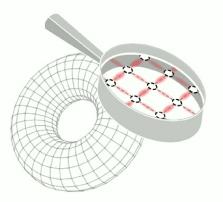
- Relevant physics could be simulated.
- Using the minimal truncation d = 3.



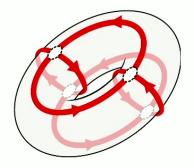
Increasing d Improving the gauge-field truncation

Concrete example:

- Study the dependence of $\langle \hat{\Box} \rangle$ on the bare coupling at different discretizations.
- Consider QED on a 2D lattice with periodic boundary conditions.
- No matter fields.



2D-QED with periodic boundary conditions



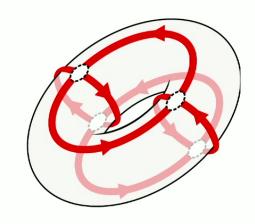
One plaquette with periodic boundary conditions

Increasing d Improving the gauge-field truncation

Pure gauge theory: $\hat{H} = g^2 \hat{H}_E + (1/g^2) \hat{H}_B$

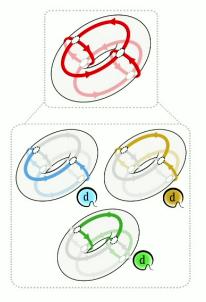
Single plaquette:

- 4 vertices.
- 8 links = 8 gauge fields.
- Gauss law: 5 independent gauge fields.
- For ground state properties **3 gauge fields**.



J. F. Haase, L. Dellantonio, A. Celi, D. Paulson, A. Kan, K. Jansen, and C. A. Muschik, Quantum 5, 393 (2021).

Increasing d Improving the gauge-field truncation



Gauge fields:

3 relevant gauge fields: convenient description as "rotators" (operators that can be visualised as loops).

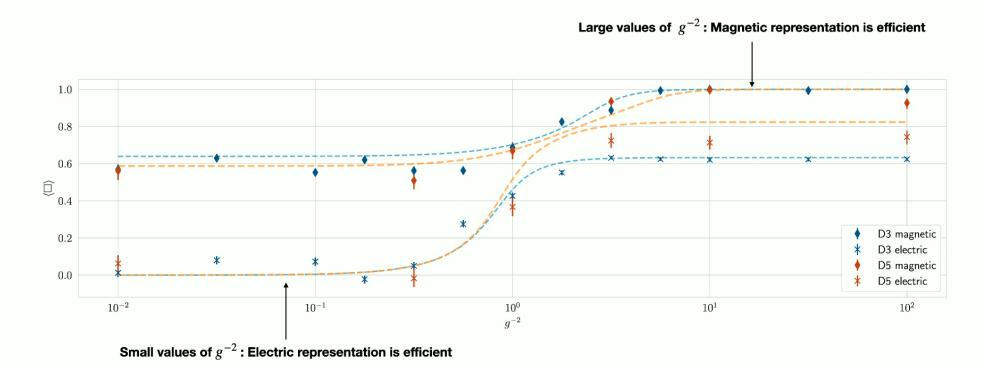
Qudits representation:

Each gauge field is represented d levels. We investigate d = 3 and d = 5.

J. F. Haase, L. Dellantonio, A. Celi, D. Paulson, A. Kan, K. Jansen, and C. A. Muschik, Quantum 5, 393 (2021).

Variational Quantum Circuit 1 Experiment: С • VQE protocol to prepare the ground state. • Measurement of $\langle \hat{\Box} \rangle$ in the ground state • for different values of the bare coupling g. 5 1.0 3 0.8 0.6 $|-2\rangle$ ▣ -1)0.4 D3 magnetic 0.2 D3 electric * D5 magnetic 0.0 D5 electric 5 $\frac{10^{0}}{g^{-2}}$ 5 5 10^{-1} 10^{1} 10^{2} 10^{-2} gauge qudits

$$\hat{H} = g^2 \hat{H}_E + (1/g^2) \hat{H}_B$$



J. F. Haase, L. Dellantonio, A. Celi, D. Paulson, A. Kan, K. Jansen, and C. A. Muschik, Quantum 5, 393 (2021).

Take home messages:

- Full VQE ground state search for 3-level qutrits and 5-level ququints.
- Qudits allows to seamlessly observe the effect of different gauge field truncations by controlling the qudit dimension.

Experimental demonstration

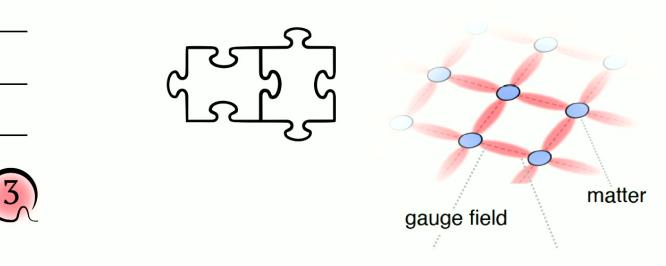
Gauge theories for particle physics beyond 1D

Including both - dynamical gauge and matter fields

── +4⟩
─ +3⟩
+2>
— +1⟩
— 0>
$ -1\rangle$
-2>
-3>
$ -4\rangle$

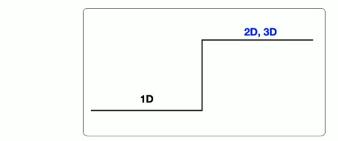
Adjustable discretisation of the gauge fields

Beyond binary



Lattice Gauge theories for particle physics

short-depth qudit circuits



Long-term vision:

- Simulate nature in 3 spatial dimensions
- Scaling up the system sizes
- Both make an efficient gauge field representation even more important

Qudit techniques:

- Can be implemented on many quantum computing platforms
- Are directly adaptable to digital quantum simulations of real-time dynamics Exciting perspective: quantum LGT calculations in regimes that are classically intractable due to sign problems
- Applications in chemistry and materials science e.g. in the form of exotic large-spin models: see e.g. work at Harvard (N. Maskara et. al.)

Outlook

Qudit workshop

9-11 July 2024, Waterloo

