Title: Embedding generalised LTB models in polymerised spherically symmetric models: formalism and applications
Speakers: Kristina Giesel
Series: Quantum Gravity
Date: April 18, 2024-3:30 PM
URL: https://pirsa.org/24040104
Abstract: At the classical level, one can restrict a spherically symmetric model to the corresponding LTB sector by requiring that a so-called LTB condition is satisfied. In this talk we will discuss how this can be generalised in the context of effective models containing quantum gravity inspired modifications of the classical theory in the form of polymerisations. The formalism presented allows us to consider more general polymerisations than in previous work in the literature. Applications of this framework are then considered, focusing on a particular class of models that have the property that the effective dynamics is completely decoupled along the radial direction. Examples of effective models that fall into this class are discussed and their physical properties are compared with existing models in the literature.

Zoom link

Embedding generalised LTB models in polymerised spherically symmetric models: formalism and applications

joint work with Hongguang Liu, Eric Rullit, Stefan Weigl and Parampreet Singh submitted to Phys.Rev.D. arXiv:2308.10949, arXiv:2308.10953

Quantum Gravity Seminar
Perimeter Institute
19.04.24

Kristina Giesel, Institute for Quantum Gravity, FAU Erlangen-Nürnberg

 Motivation

Investigate quantum black hole models interesting for quantum gravity
Many people contribute:
LAshtekar, Bojowald, Modesto, Cartin, Khanna, Boehmer, Vandersloot, Chiou, campiglia, Gambini, Pullin, sabharwal, Brannlund, Kloster, De Benedictis, Olmedo, Dadhich, Joe, Singh, Haggard, Rovelli, Vidotto, Corichi, Saini, cortez, Cuervo, Morales-Técotl, Ruelas, Pawlowskí, Bianchi,, Christodoulo, D'Ambrosio, Alesci, Bahrami, Pranzetti, Husain, Kelly, Santacruz, Wilson-Ewing, Lewandowski, Zhang, Ma, Song, Bodendorfer, Mele, Münch, Navascués, Mena Marugă, García-Quismondo, Perez, Speziale, Viollet, Han, K.G., Liu, Li, Weigl,Alonso-Bardají, Brizuela, vera,... 1

Recent reviews: [दambini,olmedo,Pullin '22], [Ashtekar, olmedo, singh '23]
Dynamical formulation of gravitational collapse: consider spherically spherically symmetric models with dust
LTB models, Oppenheimer-Snyder collapse
Here we will consider effective models to formulate such models which involve (LQG inspired) quantum corrections

Aim: Develop formalism that allows to investigate a broad class of effective models Iseminal work by Bojowald, Harada, Reyes, tibrewala '08'091

Plan of the talk

I. Brief summary on classical LTB models
II. Effective models: embedding LTB models into spherically symmetric models
III. Applications
IV. Comparison with existing models
V. Summary and conclusions

 I. Classical LTB models

LTB: Spherically symmetric solution with dust
We consider Ashtekar-Barbero variables for spherical symmetry $\left(A_{a}^{j}, E_{j}^{a}\right)$
After implementing the Gauss constraint: [Bbojwald Kastrup 'oo1, [bojowald, swiderskíoz]

$$
\begin{aligned}
A_{a}^{j} \tau_{j} \mathrm{~d} X^{a}= & 2 \beta K_{x}(x) \tau_{1} \mathrm{~d} x+\left(\beta K_{\phi}(x) \tau_{2}+\frac{\partial_{x} E^{x}(x)}{2 E^{\phi}(x)} \tau_{3}\right) \mathrm{d} \theta \\
& +\left(\beta K_{\phi}(x) \tau_{3}-\frac{\partial_{x} E^{x}(x)}{2 E^{\phi}(x)} \tau_{2}\right) \sin (\theta) \mathrm{d} \phi+\cos (\theta) \tau_{1} \mathrm{~d} \phi \\
E_{j}^{a} \tau^{j} \frac{\partial}{\partial X^{a}}= & E^{x}(x) \sin (\theta) \tau_{1} \partial_{x}+\left(E^{\phi}(x) \tau_{2}\right) \sin (\theta) \partial_{\theta}+\left(E^{\phi}(x) \tau_{3}\right) \partial_{\phi},
\end{aligned}
$$

Reduced phase space including dust:

$$
\left\{K_{x}(x), E^{x}(y)\right\}=G \delta(x, y) \quad\left\{K_{\phi}(x), E^{\phi}(y)\right\}=G \delta(x, y) \quad\left\{T(x), P_{T}(y)\right\}=\delta(x, y)
$$

 I. Classical LTB models

General spherically symmetric metric

$$
\mathrm{d} s^{2}=-N(x, t)^{2} d t^{2}+\frac{\left(E^{\phi}\right)^{2}}{\left|E^{x}\right|}\left(d x+N^{x} d t\right)^{2}+\left|E^{x}\right| d \Omega^{2}
$$

Consider the form of the LTB metric LLemaìtre' '331, ITolman '34], [Bondi' '471

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\frac{\left(\left(E^{x}\right)^{\prime}\right)^{2}}{4\left|E^{x}\right|(1+\mathcal{E}(x))} \mathrm{d} x^{2}+\left|E^{x}\right| \mathrm{d} \Omega^{2} \quad \partial_{t} E^{x}= \pm 2 \sqrt{E^{x}} \sqrt{\mathcal{E}(x)+\frac{\mathcal{F}(x)}{\left(E^{x}\right)^{2}}}
$$

To match both metric we need
shells decouple classically

$$
N=1 \quad N^{x}=0 \quad G_{x}(x)=\frac{E^{x \prime}}{2 E^{\phi}}(x)-\sqrt{1+\mathcal{E}(x)}=0
$$

Dust time gauge + LTB condition

$$
C \longrightarrow G_{T}=T(x)-t, \quad C_{x} \longrightarrow G_{x}=\frac{E^{x^{\prime}}}{2 E^{\phi}}(x)-\sqrt{1+\mathcal{E}(x)}
$$

II. Effective models: assumptions

Work in the framework of effective theories: Polymerisations

$$
K_{\phi} \rightarrow \frac{\sin \left(\alpha K_{\phi}\right)}{\alpha} \text { more general } \quad K_{\phi} \rightarrow f\left(E^{x}, E^{\phi}, K_{x}, K_{\phi}\right) \quad \lim _{\alpha \rightarrow 0} f=K_{\phi}
$$

Inverse triad corrections

$$
\frac{1}{\sqrt{E^{x}}} \rightarrow \frac{h_{1}\left(E^{x}\right)}{\sqrt{E^{x}}}, \quad \frac{E^{x}}{\sqrt{E^{x}}}=\sqrt{E^{x}} \rightarrow \sqrt{E^{x}} h_{2}\left(E^{x}\right)
$$

Main assumptions of the framework:
Function preserving polymerisation
No polymerisation of the spatial diffeomorphism constraint
Temporal gauge fixed model \rightarrow partial gauge fixing
Allow polymerisations of the LTB condition
Large class of existing models can be embedded into this framework

II. Effective models

We consider the following class of models in dust time gauge

$$
H_{P}^{\Delta}\left[N^{x}\right]=\int \mathrm{d} x\left(C^{\Delta}+N^{x} C_{x}\right)(x), \quad C_{x}=\frac{1}{G}\left(E^{\phi} K_{\phi}^{\prime}-K_{x}\left(E^{x}\right)^{\prime}\right)
$$

Polymerised gravitational contribution to Hamiltonian constraint

$$
C^{\Delta}(x)=\frac{E^{\phi}}{2 G \sqrt{E^{x}}}\left[-(1+f) E^{x}\left(\frac{4 K_{x} K_{\phi}}{E^{\phi}}+\frac{K_{\phi}^{2}}{E^{x}}\right)+h_{1}\left(\left(\frac{E^{x \prime}}{2 E^{\phi}}\right)^{2}-1\right)+2 \frac{E^{x}}{E^{\phi}} h_{2}\left(\frac{E^{x \prime}}{2 E^{\phi}}\right)^{\prime}\right]
$$

Polymerisation functions with following classical limit

$$
h_{1}\left(E^{x}\right) \rightarrow 1 \quad h_{2}\left(E^{x}\right) \rightarrow 1 \quad f\left(K_{x} / E^{\phi}, K_{\phi}, E^{x}\right) \rightarrow 0 \quad \frac{K_{x}}{E^{\phi}} \quad \begin{aligned}
& \text { more convenient } \\
& \text { combination }
\end{aligned}
$$

We have

$$
\left\{C^{\Delta}[N], C_{x}\left[N^{x}\right]\right\}=C^{\Delta}\left[N^{x}\left(\partial_{x} N\right)\right]
$$

For Poisson bracket involving two C^{Δ} we will get additional restrictions on polymerisation

II. Conservation of C^{Δ}

Condition for conservation of C^{Δ}
[K.G, Liu, Rullit, Singh, Weigl'23] [tibrewala '12], [Alonso-Bardaji, Brizuela '21]
One has

$$
\left.\left\{H_{P}^{\Delta}\left[N^{x}=0\right], C^{\Delta}(y)\right\}\right|_{C_{x}=0}=0
$$

if K_{x} is not polymerised and the condition holds

$$
\frac{h_{1}-2 E^{x} \partial_{E^{x}} h_{2}}{h_{2}}=\frac{-4 E^{x} \partial_{E^{x}} f^{(2)}+\partial_{K_{\phi}} f^{(1)}}{2 f^{(2)}}
$$

This restricts the form of C^{Δ} to

$$
C^{\Delta}(x)=-\frac{E^{\phi}}{2 G \sqrt{E^{x}}}\left[\frac{4 K_{x} f^{(2)}\left(K_{\phi}, E^{x}\right)}{E^{\phi}}+\frac{f^{(1)}\left(K_{\phi}, E^{x}\right)}{E^{x}}-h_{1} \ldots\right](x)
$$

then we have

$$
\left\{C^{\Delta}\left[N_{1}\right], C^{\Delta}\left[N_{2}\right]\right\}=\left(\left(\partial_{K_{\phi}} f^{(2)}\right) \frac{E^{x}}{\left(E^{\phi}\right)^{2}} C_{x}\right)\left[N_{1} N_{2}^{\prime}-N_{2} N_{1}^{\prime}\right]
$$

since partial gauge fixed could also relax condition of conservation here

II. Effective models

We consider the following class of models in dust time gauge

$$
H_{P}^{\Delta}\left[N^{x}\right]=\int \mathrm{d} x\left(C^{\Delta}+N^{x} C_{x}\right)(x), \quad C_{x}=\frac{1}{G}\left(E^{\phi} K_{\phi}^{\prime}-K_{x}\left(E^{x}\right)^{\prime}\right)
$$

Polymerised gravitational contribution to Hamiltonian constraint

$$
C^{\Delta}(x)=\frac{E^{\phi}}{2 G \sqrt{E^{x}}}\left[-(1+f) E^{x}\left(\frac{4 K_{x} K_{\phi}}{E^{\phi}}+\frac{K_{\phi}^{2}}{E^{x}}\right)+h_{1}\left(\left(\frac{E^{x \prime}}{2 E^{\phi}}\right)^{2}-1\right)+2 \frac{E^{x}}{E^{\phi}} h_{2}\left(\frac{E^{x \prime}}{2 E^{\phi}}\right)^{\prime}\right]
$$

Polymerisation functions with following classical limit

$$
h_{1}\left(E^{x}\right) \rightarrow 1 \quad h_{2}\left(E^{x}\right) \rightarrow 1 \quad f\left(K_{x} / E^{\phi}, K_{\phi}, E^{x}\right) \rightarrow 0 \quad \frac{K_{x}}{E^{\phi}} \quad \begin{aligned}
& \text { more convenient } \\
& \text { combination }
\end{aligned}
$$

We have

$$
\left\{C^{\Delta}[N], C_{x}\left[N^{x}\right]\right\}=C^{\Delta}\left[N^{x}\left(\partial_{x} N\right)\right]
$$

For Poisson bracket involving two C^{Δ} we will get additional restrictions on polymerisation

II. Conservation of C^{Δ}

Condition for conservation of C^{Δ}
[K.G, Liu, Rullit, Singh, Weigl'23] [tibrewala '12], [Alonso-Bardaji, Brizuela '21]
One has

$$
\left.\left\{H_{P}^{\Delta}\left[N^{x}=0\right], C^{\Delta}(y)\right\}\right|_{C_{x}=0}=0
$$

if K_{x} is not polymerised and the condition holds

$$
\frac{h_{1}-2 E^{x} \partial_{E^{x}} h_{2}}{h_{2}}=\frac{-4 E^{x} \partial_{E^{x}} f^{(2)}+\partial_{K_{\phi}} f^{(1)}}{2 f^{(2)}}
$$

This restricts the form of C^{Δ} to

$$
C^{\Delta}(x)=-\frac{E^{\phi}}{2 G \sqrt{E^{x}}}\left[\frac{4 K_{x} f^{(2)}\left(K_{\phi}, E^{x}\right)}{E^{\phi}}+\frac{f^{(1)}\left(K_{\phi}, E^{x}\right)}{E^{x}}-h_{1} \ldots\right](x)
$$

then we have

$$
\left\{C^{\Delta}\left[N_{1}\right], C^{\Delta}\left[N_{2}\right]\right\}=\left(\left(\partial_{K_{\phi}} f^{(2)}\right) \frac{E^{x}}{\left(E^{\phi}\right)^{2}} C_{x}\right)\left[N_{1} N_{2}^{\prime}-N_{2} N_{1}^{\prime}\right]
$$

since partial gauge fixed could also relax condition of conservation here

 II. Examples

Example I: conserved C^{Δ}
[tibrewala '12]

$$
f^{(1)}=\frac{\sin \left(\beta \sqrt{\Delta} K_{\phi}\right)^{2}}{\beta^{2} \Delta}, \quad f^{(2)}=\frac{\sin \left(2 \beta \sqrt{\Delta} K_{\phi}\right)}{2 \beta \sqrt{\Delta}} \quad h_{1}=1, \quad h_{2}=1
$$

factor 2 important here, cos-deformation in algebra
Example II: C^{Δ} is not conserved [Bojowald, Harada, Tribewala ${ }^{\circ}{ }^{\circ} 1$

$$
f^{(1)}=h_{1}\left(f^{(2)}\right)^{2}, \quad f^{(2)}=\frac{\sin \left(\beta \sqrt{\Delta} K_{\phi}\right)}{\beta \sqrt{\Delta}}, \quad h_{2}=l\left(E^{x}\right) \quad h_{1}\left(E^{x}\right)=\sqrt{E^{x}} \frac{\sqrt{E^{x}+\beta l_{p}^{2} / 2}-\sqrt{E^{x}-\beta l_{p}^{2} / 2}}{\beta l_{p}^{2} / 2}
$$

condition not satisfied since RHS not only function of E^{x}

$$
\frac{-4 E^{x} \partial_{E^{x}} f^{(2)}+\partial_{K_{\phi}} f^{(1)}}{2 f^{(2)}}=\cos \left(\beta \sqrt{\Delta} K_{\phi}\right) h_{1}
$$

 II. Examples

Example I: conserved C^{Δ}
[tibrewala '12]

$$
f^{(1)}=\frac{\sin \left(\beta \sqrt{\Delta} K_{\phi}\right)^{2}}{\beta^{2} \Delta}, \quad f^{(2)}=\frac{\sin \left(2 \beta \sqrt{\Delta} K_{\phi}\right)}{2 \beta \sqrt{\Delta}} \quad h_{1}=1, \quad h_{2}=1
$$

factor 2 important here, cos-deformation in algebra
Example II: C^{Δ} is not conserved [Bojowald, Harada, Tribewala ${ }^{\circ}{ }^{\circ} 1$

$$
f^{(1)}=h_{1}\left(f^{(2)}\right)^{2}, \quad f^{(2)}=\frac{\sin \left(\beta \sqrt{\Delta} K_{\phi}\right)}{\beta \sqrt{\Delta}}, \quad h_{2}=l\left(E^{x}\right) \quad h_{1}\left(E^{x}\right)=\sqrt{E^{x}} \frac{\sqrt{E^{x}+\beta l_{p}^{2} / 2}-\sqrt{E^{x}-\beta l_{p}^{2} / 2}}{\beta l_{p}^{2} / 2}
$$

condition not satisfied since RHS not only function of E^{x}

$$
\frac{-4 E^{x} \partial_{E^{x}} f^{(2)}+\partial_{K_{\phi}} f^{(1)}}{2 f^{(2)}}=\cos \left(\beta \sqrt{\Delta} K_{\phi}\right) h_{1}
$$

 II. Compatible LTB condition

First consider general case where C^{Δ} does not need to be conserved
Asumme $f\left(K_{x} / E^{\phi}, K_{\phi}, E^{x}\right)$
Ansatz for polymerised LTB condition

$$
G_{x}^{\Delta}(x):=\frac{E^{x \prime}}{2 E^{\phi}}(x)-g_{\Delta}
$$

with $g_{\Delta}\left(K_{\phi}, E^{x}, \partial_{x} K_{\phi}, \partial_{x} E^{x}, \cdots, \partial_{x}^{n} K_{\phi}, \partial_{x}^{n} E^{x}, \Xi\right)(t, x)$
Classical limit $G_{x}^{\Delta}(x) \rightarrow G_{x}=\frac{E^{x^{\prime}}}{2 E^{\phi}}-\sqrt{1+\mathcal{E}(x)}$
Require stability under effective dynamics, then compatible
Technically simpler to work at the level of the equations of motion
For which G_{x}^{Δ} do the four EOM of $\dot{K}_{x}, \dot{K}_{\phi}, \dot{E}^{x}, \dot{E}^{\phi}$ reduce to only two in the sector

$$
N^{x}=0, \quad C_{x}=0, \quad G_{x}^{\Delta}=0 \quad ?
$$

Compatible LTB conditions can be written in the form

$$
g_{\Delta}=g_{\Delta}^{(1)}\left(K_{\phi}, E^{x}, \mathcal{E}\right)+g_{\Delta}^{(2)}\left(\widetilde{K}_{x}=\frac{\partial_{x} K_{\phi}}{\partial_{x} E^{x}}, K_{\phi}, E^{x}\right) \quad g_{\Delta}^{(1)} \text { non-marginally }
$$

 II. Compatible LTB condition

Interplay between polymerisation and compatible LTB condition
Also restriction on K_{x} polymerisation
non-marginally bound: no polymerisation for K_{x} allowed marginally bound: if $g_{\Delta}^{(2)}=g_{\Delta}^{(2)}\left(K_{\phi}, E^{x}\right)$ then no K_{x} polymerisation allows

In case the LTB function can be factored out $g_{\Delta}^{(1)}=\tilde{g}_{\Delta}\left(K_{\phi}, E^{x}\right) \sqrt{1+\mathcal{E}}$
Then $g_{\Delta}^{(1)}=\tilde{g}_{\Delta}\left(E^{x}\right) \sqrt{1+\mathcal{E}} \quad 1-\frac{2 E^{x} \partial_{E^{x}} \tilde{g}_{\Delta}}{\tilde{g}_{\Delta}}=\frac{-4 E^{x} \partial_{E^{x}} f^{(2)}+\partial_{K_{\phi}} f^{(1)}}{2 f^{(2)}}$
Conservation of C^{Δ} if in addition holds

$$
2 E^{x} \partial_{E^{x}} \tilde{g}_{\Delta}=\left(1-\frac{h_{1}-2 E^{x} \partial_{E^{x}} h_{2}}{h_{2}}\right) \tilde{g}_{\Delta}
$$

Special case classical LTB condition $\tilde{g}_{\Delta}=1$

$$
\begin{array}{cc}
\partial_{K_{\phi}} f^{(1)}=2 f^{(2)}+4 E^{x} \partial_{E^{x}} f^{(2)} & h_{1}=h_{2}+2 E^{x} \partial_{E^{x}} h_{2} \\
\text { compatibility } & \text { conservation }
\end{array}
$$

 II. Compatible LTB condition

Again the two examples we considered earlier

$$
\begin{aligned}
& \text { Example I: [Tibrewala '12] } \\
& \qquad f^{(1)}=\frac{\sin \left(\beta \sqrt{\Delta} K_{\phi}\right)^{2}}{\beta^{2} \Delta}, \quad f^{(2)}=\frac{\sin \left(2 \beta \sqrt{\Delta} K_{\phi}\right)}{2 \beta \sqrt{\Delta}} \quad h_{1}=1, \quad h_{2}=1
\end{aligned}
$$

satisfies $\quad \partial_{K_{\phi}} f^{(1)}=2 f^{(2)}+4 E^{x} \partial_{E^{x}} f^{(2)} \quad h_{1}=h_{2}+2 E^{x} \partial_{E^{x}} h_{2}$
classical LTB condition is compatible: $\quad \tilde{g}_{\Delta}=1 \quad G_{x}^{\Delta}=G_{x}=\frac{E^{x \prime}}{2 E^{\phi}}(x)-\sqrt{1+\mathcal{E}(x)}$

Example II: [Bojowald, Harada, Tribewala '06]

$$
f^{(1)}=h_{1}\left(f^{(2)}\right)^{2}, \quad f^{(2)}=\frac{\sin \left(\beta \sqrt{\Delta} K_{\phi}\right)}{\beta \sqrt{\Delta}}, \quad h_{2}=l\left(E^{x}\right) \quad h_{1}\left(E^{x}\right)=\sqrt{E^{x}} \frac{\sqrt{E^{x}+\beta l_{p}^{2} / 2}-\sqrt{E^{x}-\beta l_{p}^{2} / 2}}{\beta l_{p}^{2} / 2}
$$

Complicated equation to solve to obtain compatible LTB condition non-marginally bound case $g_{\Delta}=g_{\Delta}^{(1)}\left(K_{\phi}, E^{x}\right)$

$$
\begin{aligned}
0= & \frac{\sin \left(\beta \sqrt{\Delta} K_{\phi}\right)}{\beta \sqrt{\Delta}}\left(g_{\Delta}^{(1)}\left(-1+h_{1} \cos \left(\beta \sqrt{\Delta} K_{\phi}\right)\right)+2 E^{x} \partial_{E^{x}} g_{\Delta}^{(1)}\right) \\
& -\left(\left(h_{1}+\left(g_{\Delta}^{(1)}\right)^{2}\left(h_{1}-2 h_{2}-4 E^{x} \partial_{E^{x}} h_{2}\right)\right)+h_{1} \frac{\sin ^{2}\left(\beta \sqrt{\Delta} K_{\phi}\right)}{\beta^{2} \Delta}\right) \partial_{K_{\phi}} g_{\Delta}^{(1)}
\end{aligned}
$$

II. Specific class of effective models

We consider effective models where a compatible LTB condition exist and C^{Δ} is conserved

Equations of motion in both marginally and non-marginally bound case

$$
\begin{aligned}
& \partial_{t} E^{x}=2 \sqrt{E^{x}} f^{(2)} \\
& \partial_{t} K_{\phi}=-\frac{1}{2 \sqrt{E^{x}}}\left(f^{(1)}-\tilde{g}_{\Delta}^{2}(1+\mathcal{E})\left(2 h_{2}+4 E^{x} \partial_{E^{x}} h_{2}-h_{1}\right)+h_{1}\right)
\end{aligned}
$$

decouple along the radial coordinate x
for each x solution involves energy $\mathcal{E}(x)$ and conserved mass $M(x)$
Some models have assumed shell decoupling by hand here shown when given
[kiefer, Schmitz '191, [k.q, Li,Singh '21]

Next we want to discuss an example that belongs to this class.

III. General Strategy in this class of models

We consider effective models where a compatible LTB condition exist and C^{Δ} is conserved (Corollary 4 in $\tau 火 . q$, Liu, Rullit, Singh, weig'231)

As the EOM completely decouple along x we can choose an LQC model as a starting point
Then results of corollary 4 allow us to determine the underlying spherically symmetric model and corresponding compatible LTB condition

Advantages:
we obtain spherically symmetric model where no areal gauge has been applied
model involves dynamically stable reduction to its LTB sector at the effective level
Makes the comparison with other existing models more straight forward for a subclass of these models we can relate the polymerised model to a covariant Lagrangian of extended mimetic gravity (modified gravity)

 III. Specific model

Choose LQC model to start with [Ashtekar,Pawloswki, singh '061
Basic variables: $\quad v=\left(E^{x}\right)^{3 / 2}, b=\frac{K_{\phi}}{\sqrt{E^{x}}}, \alpha=\beta \sqrt{\Delta}$.
Dynamics: $\quad \partial_{t} v=3 v \frac{\sin (2 \alpha b)}{2 \alpha}, \quad \partial_{t} b=-\frac{1}{2}\left(\frac{\mathcal{E}(x)}{v^{\frac{2}{3}}}+\frac{3 \sin ^{2}(\alpha b)}{\alpha^{2}}\right)$
Now we can use corollary 4 to determine $f^{(1)}, f^{(2)}, h_{1}, h_{2}$ and compatible LTB condition by construction C^{Δ} is conserved

$$
C^{\Delta}=-\frac{E^{\phi} \sqrt{E^{x}}}{2 G}\left[\frac{3}{\alpha^{2}} \sin ^{2}\left(\frac{\alpha K_{\phi}}{\sqrt{E^{x}}}\right)+\frac{\left(2 E^{x} K_{x}-E^{\phi} K_{\phi}\right)}{\alpha \sqrt{E^{x}} E^{\phi}} \sin \left(\frac{2 \alpha K_{\phi}}{\sqrt{E^{x}}}\right)+\frac{1-\left(\frac{E^{x \prime}}{2 E^{\phi}}\right)^{2}}{E^{x}}-\frac{2}{E^{\phi}}\left(\frac{E^{x \prime}}{2 E^{\phi}}\right)^{\prime}\right]
$$

no inverse triad corrections: $\quad h_{1}=h_{2}=1$
Classical LTB condition is compatible: $G_{x}^{\Delta}=G_{x}=\frac{E^{x \prime}}{2 E^{\phi}}-\sqrt{1+\mathcal{E}}$

 III. Specific model

Effective LTB sector in LTB coordinates
LTB metric: $\quad \mathrm{d} s^{2}=-\mathrm{d} t^{2}+\left(\partial_{x} R\right)^{2} \mathrm{~d} x^{2}+R^{2} \mathrm{~d} \Omega^{2} \quad R=\sqrt{E^{x}}$
$\begin{array}{ll}\text { Dynamics modified } & \dot{R}^{2} \\ \text { Friedmann eqn } & R^{2}\end{array} x=\left(\frac{\kappa \rho}{6}+\frac{\mathcal{E}}{R^{2}}\right)\left(1-\alpha^{2}\left(\frac{\kappa \rho}{6}+\frac{\mathcal{E}}{R^{2}}\right)\right)(x)$
Specialise to marginally bound case $\mathcal{E}=0$
Solution of modified Friedmann eqn

$$
R(x, t)=\sqrt{E^{x}}=\left(\mathcal{F}(x)\left(\frac{9}{4}(\tilde{\beta}(x)-t)^{2}+\alpha^{2}\right)\right)^{\frac{1}{3}}
$$

Classical LTB solution for $\alpha=0$
For homogeneous dust solution [k.9., Han, Li, Liu, singh'22], [Fazzini, Rovelli, soltani '23]

III. Concrete model

We can specialise to polymerised vacuum case for
LTB metric: $\quad \mathrm{d} s^{2}=-\mathrm{d} t^{2}+\left(\partial_{x} R\right)^{2} \mathrm{~d} x^{2}+R^{2} \mathrm{~d} \Omega^{2} \quad R=\sqrt{E^{x}}$
$\begin{array}{ll}\text { Dynamics modified } & \dot{R}^{2} \\ \text { Friedmann eqn } & R^{2}\end{array} x=\left(\frac{\kappa \rho}{6}+\frac{\mathcal{E}}{R^{2}}\right)\left(1-\alpha^{2}\left(\frac{\kappa \rho}{6}+\frac{\mathcal{E}}{R^{2}}\right)\right)(x)$
Specialise to marginally bound case $\mathcal{E}=0$
Solution $\quad R(x, t)=\sqrt{E^{x}}=\left(\mathcal{F}(x)\left(\frac{9}{4}(\tilde{\beta}(x)-t)^{2}+\alpha^{2}\right)\right)^{\frac{1}{3}}$
Classical LTB solution for $\alpha=0$
For homogeneous dust solution [K.G., Han, Li, Liu, Singh'22], [Fazzini, Rovelli, Soltani '23]
No shell crossing singularity for OS collapse, different for inhom. dust profiles
Horizons form if $\quad M(x)=\frac{\mathcal{F}}{2 G}>M_{c}=\frac{8 \alpha}{3 \sqrt{3} G}$
[Fazzini, Husain, Wilson-Ewing '23]
[Kelly, santacruz, Wilson-Ewing '20] [K.G., Li, singh'21] [K.G., Han, Li, Liu, singh '21][Lewandowski, Ma, zhang '22]

 III. Polymerised vacuum solutions

We can specialise to polymerised vacuum case for $\mathcal{F}=R_{s}=$ const
Solution $\quad R(x, t)=\left(R_{s}\left(\frac{9}{4} z^{2}+\alpha^{2}\right)\right)^{\frac{1}{3}} \quad$ here $\quad \tilde{\beta}(x)=x \quad z:=x-t$
Schwarzschild solution in LTB coordinates for $\alpha=0$
Since solution depends on z only
Insensitive to sign of z since it depends quadratically on z.
Curvature invariants

$$
\mathcal{R}=-\frac{96 \alpha^{2}}{\left(4 \alpha^{2}+9 z^{2}\right)^{2}}, \quad \mathcal{R}_{\mu \nu \rho \sigma} \mathcal{R}^{\mu \nu \rho \sigma}=\frac{576\left(160 \alpha^{4}-96 \alpha^{2} z^{2}+27 z^{4}\right)}{\left(4 \alpha^{2}+9 z^{2}\right)^{4}}
$$

At $\mathrm{z}=0$ different from classical theory: $\mathcal{R} \neq 0$ and bounded at $\mathrm{z}=0$.

III. Underlying covariant Lagrangian

Extended mimetic gravity

$$
S\left[g_{\mu \nu}, \phi, \lambda\right]=\frac{1}{8 \pi G} \int_{M_{4}} d^{4} x \sqrt{-g}\left[\frac{1}{2} R^{(4)}+L_{\phi}\left(\phi, \chi_{1}, \cdots, \chi_{p}\right)+\frac{1}{2} \lambda\left(\phi_{\mu} \phi^{\mu}+1\right)\right]
$$

mimetic field ϕ, λ is a Lagrange multiplier for the mimetic condition, $2+1$ dof

$$
\chi_{n} \equiv \sum \phi_{\mu_{1}}^{\mu_{2}} \phi_{\mu_{2}}^{\mu_{3}} \cdots \phi_{\mu_{n-1}}^{\mu_{n}} \phi_{\mu_{n}}^{\mu_{1}}, \quad \phi_{\mu}=\nabla_{\mu} \phi, \quad \phi_{\mu \nu}=\nabla_{\mu} \nabla_{\nu} \phi .
$$

Spherically symmetric model: Sufficient to have $L_{\phi}\left(\chi_{1}, \chi_{2}\right), \psi=\ln \left(E^{x}\right)$ 2D action [LAchour, Lamy, Liu, Noui '181, LHan, Liu'22]

$$
S_{2}=\frac{1}{4 G} \int_{\mathcal{M}_{2}} \mathrm{~d}^{2} x \operatorname{det}(e) e^{2 \psi}\left\{\mathcal{R}+L_{\phi}(X, Y)+\frac{\lambda}{2}\left(\phi_{, j} \phi^{, j}+1\right)\right\}
$$

(Smooth) mimetic field defines foliation into spacelike hyper surfaces $\phi=$ const Generalised Einstein's equation

$$
G_{\mu \nu}^{\Delta}:=G_{\mu \nu}-T_{\mu \nu}^{\phi}=-\lambda \partial_{\mu} \phi \partial_{\nu} \phi, \quad \partial_{\mu} \phi \partial^{\mu} \phi=-1
$$

III. Underlying covariant Lagrangian

Extended mimetic gravity

$$
S\left[g_{\mu \nu}, \phi, \lambda\right]=\frac{1}{8 \pi G} \int_{M_{4}} d^{4} x \sqrt{-g}\left[\frac{1}{2} R^{(4)}+L_{\phi}\left(\phi, \chi_{1}, \cdots, \chi_{p}\right)+\frac{1}{2} \lambda\left(\phi_{\mu} \phi^{\mu}+1\right)\right]
$$

mimetic field ϕ, λ is a Lagrange multiplier for the mimetic condition, $2+1$ dof

$$
\chi_{n} \equiv \sum \phi_{\mu_{1}}^{\mu_{2}} \phi_{\mu_{2}}^{\mu_{3}} \cdots \phi_{\mu_{n-1}}^{\mu_{n}} \phi_{\mu_{n}}^{\mu_{1}}, \quad \phi_{\mu}=\nabla_{\mu} \phi, \quad \phi_{\mu \nu}=\nabla_{\mu} \nabla_{\nu} \phi .
$$

Spherically symmetric model: Sufficient to have $L_{\phi}\left(\chi_{1}, \chi_{2}\right), \psi=\ln \left(E^{x}\right)$ 2D action [LAchour, Lamy, Liu, Noui '181, [Han, Liu'22]

$$
S_{2}=\frac{1}{4 G} \int_{\mathcal{M}_{2}} \mathrm{~d}^{2} x \operatorname{det}(e) e^{2 \psi}\left\{\mathcal{R}+L_{\phi}(X, Y)+\frac{\lambda}{2}\left(\phi_{, j} \phi^{, j}+1\right)\right\}
$$

(Smooth) mimetic field defines foliation into spacelike hyper surfaces $\phi=$ const Generalised Einstein's equation

$$
G_{\mu \nu}^{\Delta}:=G_{\mu \nu}-T_{\mu \nu}^{\phi}=-\lambda \partial_{\mu} \phi \partial_{\nu} \phi, \quad \partial_{\mu} \phi \partial^{\mu} \phi=-1
$$

III. Underlying covariant Lagrangian

Now for models with have no inverse triad corrections + compatible with $\bar{\mu}$-scheme we can relate the choice of the mimetic potential to specific choices of polymerisation function [Achour, Lamy, Liu, Noui'181, [Han, Lín'22]

$$
S_{2}=\frac{1}{4 G} \int_{\mathcal{M}_{2}} \mathrm{~d}^{2} x \operatorname{det}(e) e^{2 \psi}\left\{\mathcal{R}+L_{\phi}(X, Y)+\frac{\lambda}{2}\left(\phi_{, j} \phi^{, j}+1\right)\right\}
$$

Higher derivative couplings can be expressed in terms of X, Y and relate to extrinsic curvature

$$
X=-\square_{h} \phi+Y=\frac{\partial_{t} E^{\phi}}{E^{\phi}}, \quad Y=-h^{i j} \partial_{i} \psi \partial_{j} \phi=\frac{\partial_{t} E^{x}}{2 E^{x}}=\frac{\sin (2 \alpha b)}{2 \alpha}
$$

Underlying covariant model allows to gauge-unfix temporal gauge with respect to mimetic field and consider coordinate taros in (t, x)

Interpretation: effective model has different clock than classical model

IV. Comparison with other models

Polymerised vacuum solution in LTB coordinates

$$
R(x, t)=\left(R_{s}\left(\frac{9}{4} z^{2}+\alpha^{2}\right)\right)^{\frac{1}{3}} \quad z:=x-t
$$

Transform to Schwarzschild coordinates: $(t, x) \rightarrow(\tau, r)$

$$
\mathrm{d} s^{2}=-A(r) \mathrm{d} \tau^{2}+\frac{1}{A(r)} \mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2} \quad A(r)=1-\frac{2 G m_{s}}{r}\left(1-\frac{\alpha^{2}}{r^{2}} \frac{2 G m_{s}}{r}\right)
$$

Agrees with models in [Kelly,santacruz,Wilson-Ewing '201,[PPanizi, Pawlowskí,Tavakoli,Lewandowski' 211 , [Lewandowski,Ma, Yang, Zhang '22]
Metric given for all $r>0$ except when horizons occur, coord. singularities However, coordinate trafo to Schwarzschild coordinates only valid for monotonic R(z) comparison: model presented here is an initial value problem

III. Quantum OS-collapse

Question: can we recover the model in LHusain, Kelly, Santacruz, Wilson-Ewing'22] ?
For this purpose need to apply areal gauge (Gullstrand-Painleve coord)

$$
G^{\mathrm{ar}}=E^{x}-r^{2} \text { gauge fixing for } C_{x} \text { yields } \quad N^{r}=-\frac{r}{2 \alpha} \sin \left(\frac{2 \alpha}{r} K_{\phi}\right)
$$

Exactly reproduces model with dynamics

$$
\begin{aligned}
& \partial_{t} E^{\phi}=-r^{2} \partial_{r}\left(\frac{E^{\phi}}{r}\right) \frac{\sin \left(\frac{2 \alpha K_{\phi}}{r}\right)}{2 \alpha} \\
& \partial_{t} K_{\phi}=-\frac{1}{2 r \alpha^{2}} \partial_{r}\left(r^{3} \sin ^{2}\left(\frac{\alpha K_{\phi}}{r}\right)\right)-\frac{1}{2 r}+\frac{r}{2 E^{2}} .
\end{aligned}
$$

Strong evidence that model here is gauge-unfixed version of

III. Quantum OS-collapse

Different properties shock solutions present?
We can transform our solution from LTB to Gullstrand-Painleve coordinates

$$
r=R(x, t) \quad N^{r}=-\partial_{t} R(t, x)=-\operatorname{sign}\left(\partial_{t} R(t, x)\right) \sqrt{\frac{2 G M(x)}{r}(\ldots)}
$$

Obtain smooth change of sign of shift in the model presented here
Note observed when working directly in areal gauge and GP coordinates
Have discontinuity/shocks in the quantum OS collapse model
Rather discontinuity in the clock field than in the metric, coordinate artefact [Fazzini, Rovelli, Soltani'23]
Can we carry this over to the mimetic field which is the clock in the effective model?

III. Quantum OS-collapse

Different globale structure can be seen by looking at $\mathrm{x}=$ const geodesics
Here since mimetic field is the clock these are also its world lines

world lines intersect in (τ, r) after the bounce but blue lines do not in $(\tau, z),(t, x)$ coordinates
OS collapse: glueing with effective junction condition does not allow shocks without violating smoothness of mimetic clocks field.

III. Underlying covariant Lagrangian

Now for models with have no inverse triad corrections + compatible with $\bar{\mu}$-scheme we can relate the choice of the mimetic potential to specific choices of polymerisation function [Achour, Lamy, Liu, Noui'181, [Han, Lín'22]

$$
S_{2}=\frac{1}{4 G} \int_{\mathcal{M}_{2}} \mathrm{~d}^{2} x \operatorname{det}(e) e^{2 \psi}\left\{\mathcal{R}+L_{\phi}(X, Y)+\frac{\lambda}{2}\left(\phi_{, j} \phi^{, j}+1\right)\right\}
$$

Higher derivative couplings can be expressed in terms of X, Y and relate to extrinsic curvature

$$
X=-\square_{h} \phi+Y=\frac{\partial_{t} E^{\phi}}{E^{\phi}}, \quad Y=-h^{i j} \partial_{i} \psi \partial_{j} \phi=\frac{\partial_{t} E^{x}}{2 E^{x}}=\frac{\sin (2 \alpha b)}{2 \alpha}
$$

Underlying covariant model allows to gauge-unfix temporal gauge with respect to mimetic field and consider coordinate taros in (t, x)

Interpretation: effective model has different clock than classical model

