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Abstract: The two body problem in general relativity is of great theoretical and observational interest, and can be studied in the post-Newtonian,
post-Minkowskian and small mass ratio approximations, as well as with effective one body and fully numerical techniques. An issue that arises is
whether the motion can be decomposed into dissipative and conservative sectors for which the conservative sector admits a Hamiltonian description.
This has been established to various orders in the post-Newtonian and post-Minkowskian approximations. In this talk, | will go over recent work
where we showed that in the small mass ratio approximation, the motion of a (spinning) point particle under the conservative piece of the first-order
self force is Hamiltonian in any stationary spacetime. After this, | describe two issues that arise when attempting to extend these results to
subleading order in the mass ratio, namely infrared divergences and ambiguities in the conservative/dissipative splittings. | suggest resolutions of
these issues and successfully derive a subleading Hamiltonian conservative sector for the scalar self force, as atoy model for the gravitational case.
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Introduction
®0000000

Binary Systems

L/\

J

Compact objects with
masses between 101, to
10° M., orbiting each other.

Potentially spinning around
different axis.

Complex, eccentric orbits.

Primary sources of
gravitational waves.

Francisco Martin Blanco

Page 4/39



Introduction
(o] Jelelelele]e]

Laser Interferometer Gravitational-Wave Observatory

(LIGO)

® Frequency sensitivity at
10Hz< f < 10*Hz.

® Comparable-mass inspirals
of neutron stars or black
holes between 1M, and
10M.

® Typical signals last seconds.
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Introduction
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Laser Interferometer Space Antenna (LISA)

e Will launch in (hopefully) 10 years.

® Frequency sensitivity at
W22 <

® Typical sources have masses
~ ]_OGA’f@Z
® Comparable-mass inspirals of
supermassive black holes.
® Extreme-mass ratio Inspirals of
stellar-mass objects into
supermassive black holes.

® Typical signals can last months.
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Introduction
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Extreme mass-ratio inspirals (EMRI'’s)

Separation of scales: The primary has mass M and the
secondary [t

® Orbital timescale T, = M

2
® Radiation-reaction timescale 7, = =

iz

Goes through i—{ ~ 10° cycles before merging.

Unparalleled probe of strong-gravity region around the
primary.

Longer signals will require higher accuracy for the waveforms.
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Binary systems

n
0
o
o
-
o
2
o
3

Numerical Relativity

in different regimes

Post-Newtonian Theory

Perturbation theory,
£elf—force

-Models EMRI's.
-Models IMRI's.
-Useful for crosschecks with

other approximations.

Mass Ratio
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Introduction
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Conservative and Dissipative sectors of the dynamics?

What are their effects?

® The dissipative piece drives the inspiral.

® The conservative piece modifies orbital features such as the
ISCO frequency, periastron adyvance, etc.
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Introduction
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Conservative and Dissipative sectors of the dynamics?

Why is it useful?

® Usually we only need one piece of the dynamics to calculate
waveforms.

® The conservative sector can be casted as a Hamiltonian
system which greatly simplifies calculations.

® Hamiltonian formulation allows to explore integrability.
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Ham. Systems
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Crash course on Hamiltonian mechanics

® Phase space coordinates:

QA = (ﬂj?’p?)

® Non-degenerate symplectic form:

Q) = dp; A dx’
O

® Hamiltonian function H(Q) that determines flow on phase
space:

dQA s VA
A\ = 0QB (3)

Francisco Martin Blanco
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Ham. Systems
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Action principle

The equations of motion can be derived from an action principle

St = [ pids’ ~ [ Ho(o )i (4)

varying respect to 2! and Di- =

Francisco Martin Blanco
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Ham. Systems
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Integrable systems

A N-dimensional Hamiltonian system is integrable when:

® There exists N conserved quantities (including the
Hamiltonian).

® which all commute with each other.
®

Francisco Martin Blanco
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Ham. Systems
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Perturbations on Hamiltonian systems

An arbitrary perturbation looks like

dQ* _ ap0H
dA QP

When can this be recasted as a Hamiltonian system?

S

. i
s OH ¥ o ap OH

F Sz.\l)_
208 * 508
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Ham. Systems
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Some results on Hamiltonian perturbations

Approximation Small Zeroth Is conservative piece
method parameter Order Hamiltonian?

Up to 4PN
1805.07240

Up to 3PM
1901.04424

& Linear in m/M

Small mass ratio = Geodesic motion 2205.01667

(Flanagan and FMB)

Post-Newtonian ; Newtonian gravity

Post-Minkowskian Special relativity

Francisco Martin Blanco
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Ham. Systems
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Geodesic motion in Kerr is Hamiltonian

® |t has three conserved
quantities (£, J, C).

® |t is also integrable.

What happens when we perturb this with the self-force?
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Self-force
9000

Dynamics of binaries in the small mass-ratio regime

® The primary sources the
background metric g(q.

® The secondary moves on an
effective metric g = g(o) + h.

® Geodesic motion in the effective
metric is equivalent to forced

@ motion with respect to the
background:

Francisco Martin Blanco
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Self-force

® The self-force is schematically:

FH(z) o V”/G[z,'y(’r')]d'r’ (8)

e Written in terms of a 2-point function G(x, x’) sourced by the
complete worldline v#(7) of the object.

J ; :
Object can emit GW's that scatter off
the curvature and are reabsorbed —
Integral over full past history.

Francisco Martin Blanco
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Self-force

Leading order conservative/dissipative split of the self-force

At first order, different pieces of the self-force are constructed
using different Green's functions.

* Retarded/Advanced G*(xz,v)
* Conservative G (z,y) = 1 [GT(z,y) + G~ (z,y)]:
Symmetric under x <> y and even under time-reversal.

* Dissipative G”(z,y) = %[G‘I(:E,y) — G~ (z,y)]:
antisymmetric under x <+ y and odd under time-reversal.
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Self-force
Q00e

Summary of self-force effects

Name of effect

Energy
scaling

Phase shift
after inspiral

Hamiltonian?

Geodesic motion

1/e

v

1st Order dissipative SF

me

X

1st Order conservative SF

1/e
1

7 Flanagan and FMB
2205.01667

2nd Order dissipative SF

1

X

2nd Order conservative SF

€

?

Leading spin-curvature
coupling

1

/ Witzany et al.
1808.06582

First order dissipative
spin-induced SF

X

First order conservative
spin-induced SF

7 Flanagan and FMB
2302.10233

Francisco Martin Blanco
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1st Order Ham.
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How to build your own Hamiltonian

Simplest example of a perturbation F'* that is Hamiltonian is when
it's the gradient of a potential:

() = @V“V(:E) (9)
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1st Order Ham.
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The Problem with Tail terms

The self-force at the particle's position z is schematically

TA((4) (e V‘£/G[z,zTr]dT' (10)

where the gradient acts on the local z but not on its functional
dependence z,/.

O
Problem: It looks like the gradient of a potential V#V(z) but it's
actually V#V (z; [2])! The Hamiltonian should be a local function
of phase space variables (z,p), not a functional!

Francisco Martin Blanco
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1st Order Ham.
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Derivation from action principle

Unperturbed motion can be derived from an action principle

Solz,p] = /p#dz” —/Ho(z,p)ds (11)

The 1st order dynamics can be derived from a non-local action
principle

S|z, p] = Solz, p] = %]dsds’G [z(s), z(s’)] (12)

Important: The two integrals pick only the symmetric piece of
G(x,y): We get the conservative dynamics.

Francisco Martin Blanco
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1st Order Ham.
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General result in dynamical systems

Any non-local Hamiltonian system with phase space coordinate
QA (z'uap,u)

S[Z p SO Z p Z i /dsl LA G Q(S]) Q(Sn)

=2
(13)

admits a local Hamiltonian description to any finite order in the
{€,} with Hamiltonian and symplegtic form

H(Q) = Hy(Q ‘f‘ZGn n

n=2

Q(Q) = QO(Q) ar Z G'n,Qn(Q)

n=2

Francisco Martin Blanco
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1st Order Ham.
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Sketch of the proof

1. The self-force is:

Fa(Q,[Q]) = e@A/G[Q, Q- ]dr’ + O(€?)

2. Order-reduction: Replace @, — Qgp(Q). Now self-force is local

Fa(@) = o / G[Q,02(@))dr + 0(&)

o
3. Define Hamiltonian

H(Q) = Ho + [ G[Q, Q0 (@)]dr" + O(e) (17)

4. Add correction to symplectic form such that it cancels extra derivative
in H.

Francisco Martin Blanco
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1st Order Ham.
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Canonical Coordinates to leading order in ¢,

Find new coordinates

N
QY =Q"+) en&il +0(e2)

n=2

to put symplectic form in canonical form. We get

(19a)

)y @(Q)] + O(e2)

(19b)

Francisco Martin Blanco
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1st Order Ham.
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Effect of the self-force on Integrability

® Zach Nasipak (2207.02224) showed that the conservative
scalar self-force breaks integrability.

® With our formalism, we found the conditions that would need
to be satisfied to keep integraPiIity. Need numerics to check!

Francisco Martin Blanco
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1st Order Ham.
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Adding spin of the secondary

® |n 2302.10233 (Flanagan, FMB) we added the effect of the
secondary’s spin to first order.

® Adding spin modifies the zeroth order dynamics, as well as the
N-point functions in the self-f?rce, but the proof still applies!
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2nd Order Ham.

Second order self-force... finally

If the 1st order self-force looks like:

F*(2) EV“/G[z,sz]d'r'

then the 2nd order self-force should look like;

() e EV""/G”[Iz,sz]dT'

+EQV‘U/G|||[Z,ZTI,ZTH:|dT,dT”

Francisco Martin Blanco
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2nd Order Ham.

Subtleties at 2nd Order: What's the conservative piece?

At 1st order, the conservative piece of G is simply

¢¢ =tlar+6).

But Einstein's equations are non-linear! 2nd order self-force
will have products G™ x GT x G™.

We get combinations
E9 R@9 RE9, @PxEYVxx@E?, @2REPxE ...

What's the prescription for picking the conservative piece?

Solution: We pick the piece that is symmetric and even!

Francisco Martin Blanco
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2nd Order Ham.
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Subtleties at 2nd Order: IR divergences

When we use the retarded Green’s function G* the system emits
radiation to future infinity:

Francisco Martin Blanco
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2nd Order Ham.

Subtleties at 2nd Order: IR divergences

When we use the conservative Green's function G, the system
has standing waves up to i’!

® At 1st order this is not a
problem...

® But the 1st order waves are
sources for the 2nd order
perturbations!

e — Divergent energy at
infinity.

Francisco Martin Blanco
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2nd Order Ham.

Subtleties at 2nd order: Don't even have a 3-point
function!

Current methods for calculating the 2nd order self-force don't give
a simple closed expression for the 3-point function Gyj.
O
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Nonperturbative self-force
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Recent work

We are working with Abraham Harte on a new formalism to
calculate the second-order self-force in a more “elegant” way.

So far only applied to scalar self-forces.
It doesn’t have point-particle divergences to deal with.

Gives simple expression for the self-force in terms of N-point
functions to any order. -

It's fully symmetric piece is given by G¢ and products of G¢
at all orders.

It still has IR divergences! So it only applies to unbound orbits
for now.
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Nonperturbative self-force
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Toy model with a scalar field ¢ coupled to matter p

Slo, p] = /dV{Lmatter(p) i [w =) = pd)]} (22)

with EoM's

O¢ + V'(¢) = —p (23)
v,u.Tmatter = vaQb (24)

[T 72|

® As p moves through some curved spacetime, it will experience
a self-force pV, ¢.

® ¢ will have divergences on the point-particle limit.

e We want an effective field ¢ that gives the same self-force but
is a vacuum solution.

Francisco Martin Blanco
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Nonperturbative self-force
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Renormalized EoM's

® We do a change of coordinates

P(z) = Op(x; Qg)a 1]
== é—{—@s((ﬂ,(lg,p]

® And define an effective action Se[gﬁ,p] = S[CI)p[aAﬁ, o], o
® We pick g such that we get Irenormalized EoM's

06 + V'(¢) =0
Vh-fmatter = ﬁvuq’b\

Nz

Francisco Martin Blanco
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Nonperturbative self-force
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Expand in powers of p and take point particle limit
The scalar charge becomes

p(z) — qb|z — v(7))]

and the equations become

(rpmatter A 7
\% Ty = pVu

\L O
DQ

@(m’)fﬂ') = qQV“/dS'Gu[%’Y(S’)]

ez / ds'ds" G [y, 7(s"),7(s")] + O(¢%)  (30)

Francisco Martin Blanco
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Nonperturbative self-force
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Takeaways

® The conservative piece of the 1st order gravitational self-force admits a
Hamiltonian description (including spin of the secondary).

Already at first order, the self-force very likely destroys integrability (Need
numeric check).

Developed nonperturbative self-force approach that gives self-force in
terms of finite N-point functions to any order.

Unique prescription for conservative sector at second order: Fully
symmetric under exchange of arguments and even under
time-reversal piece of the N-point functions.

The conservative piece of the 2nd order scalar self-force admits a
Hamiltonian description.

IR divergences of the conservative dynamics are still a problem!

We are working to generalize all this to the gravitational case.
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