Title: Cohomological description of contextual measurement-based quantum computations â€" the temporally ordered case

Speakers: Robert Raussendorf

Collection: Foundations of Quantum Computational Advantage

Date: April 30, 2024 - 11:15 AM

URL: https://pirsa.org/24040091

Abstract: It is known that measurement-based quantum computations (MBQCs) which compute a non-linear Boolean function with sufficiently high probability of success are contextual, i.e., they cannot be described by a non-contextual hidden variable model. It is also known that contextuality has descriptions in terms of cohomology [1,2]. And so it seems in range to obtain a cohomological description of MBQC. And yet, the two connections mentioned above are not easily strung together. In a previous work [3], the cohomological description for MBQC was provided for the temporally flat case. Here we present the extension to the general temporally ordered case.

[1] S. Abramsky, R. Barbosa, S. Mansfield, The Cohomology of Non-Locality and Contextuality, EPTCS 95, 2012, pp. 1-14

[2] C. Okay, S. Roberts, S.D. Bartlett, R. Raussendorf, Topological proofs of contextuality in quantum mechanics, Quant. Inf. Comp. 17, 1135-1166 (2017).

[3] R. Raussendorf, Cohomological framework for contextual quantum computations, Quant. Inf. Comp. 19, 1141-1170 (2019)

This is jount work with Polina Feldmann and Cihan Okay

Pirsa: 24040091 Page 1/39

Putting contradictions to work,

now in a temporally ordered fashion

Robert Raussendorf Leibniz Universität Hannover

Joint work with Polina Feldmann (UBC) and Cihan Okay (Bilkent)

Pirsa: 24040091 Page 2/39

Pirsa: 24040091 Page 3/39

Pirsa: 24040091 Page 4/39

Outline

⊕*

- 1. Review: The MBQC-contextuality-cohomology triangle for the case of flat temporal order
- 2. New: The same for the case with proper temporal order

Pirsa: 24040091 Page 5/39

What's the triangle all about?

A question we ask:

U,

- The Boolean Algebra is at the foundation of classical digital computation.
- Which structures are at the foundation of quantum computation?

We don't really know, but Mermin's star is an example of those foundational structures: it computes, it is contextual, and it is described by cohomology.

The MBQC-contextality-cohomology triangle generalizes the structure present in Mermin's star to all MBQC.

Pirsa: 24040091 Page 6/39

Mermin's star

.. a simple proof of the KS Theorem in dimension $d \ge 8$.

⊕*

Is there a consistent value assignment $\lambda(\cdot) = \pm 1$ for all observables in the star?

ullet No consistent non-contextual value assignment λ exists. Any attempt to assign values leads to an algebraic contradiction.

.. but there is no temporal order in Mermin's star.

N.D. Mermin, RMP 1992.

Quantum computation by measurement

₾.

- Information written onto a cluster state, processed and read out by one-qubit measurements only.
- The resulting computational scheme is universal.

R. Raussendorf and H.J. Briegel, PRL 2001.

Pirsa: 24040091 Page 8/39

Classical side processing in MBQC

0,

Every measurement outcome is individually random. Classical processing required in the following places:

- 1. Extract correlations and to obtain computational output.
- 2. Adapt measurement bases

Classical side-processing is all linear mod 2.

Pirsa: 24040091 Page 9/39

Quantum computation by measurement

₾.

- Information written onto a cluster state, processed and read out by one-qubit measurements only.
- The resulting computational scheme is universal.

R. Raussendorf and H.J. Briegel, PRL 2001.

Pirsa: 24040091 Page 10/39

How temporal order comes about

This MBQC on a 3-qubit cluster state

₾,

can simulate this circuit:

$$|+\rangle - U_Z(\alpha) - U_X(\beta) - U_Z(\gamma)$$

but actually realizes this circuit:

Propagate forward!

output $o = s_1 \oplus s_3$, basis choice $q_2 = s_1$, $q_3 = s_2$.

Contextuality

Mermin's star has a state-dependent version.

⊕,

The state-dependent version invokes

- A GHZ-state
- Only local observables

.

ullet Still no consistent value assignment λ for the remaining local observables.

N.D. Mermin, RMP 1992.

Homology and cohomology

⊕,

Geometric objects, such as surfaces, have boundaries.

Pirsa: 24040091 Page 13/39

Homology and cohomology

⊕,

Not every chain with vanishing boundary is itself a boundary of something.

Pirsa: 24040091 Page 14/39

Homology and cohomology

⊕,

If a field is the gradient of a potential, then its curl vanishes.

$$(ddV = 0)$$

Our notion of hidden-variable model:

Pirsa: 24040091 Page 16/39

1B: Edges of the triangle

⊕,

- Contextuality in MBQC
- The cohomology of contextuality

Pirsa: 24040091 Page 17/39

Mermin's KS proof computes!

⊕,

output $o = s_1 + s_2 + s_3 \mod 2$

- * Use GHZ state as computational resource
- * Compute OR-gate
- Classical processing all linear, computed OR-gate non-linear.
- ⇒ Classical control computer promoted to classical universality.

J. Anders and D. Browne, PRL 102, 050502 (2009).

Ð.

In MBQC, quantumness is required in the form of contextuality

Theorem 1: An MBQCs that deterministically computes a non-linear Boolean function is contextual.

J. Anders and D. Browne, PRL 102, 050502 (2009).

R. Raussendorf, PRA, 2013.

Pirsa: 24040091 Page 19/39

ζm).

Theorem 2. Consider an MBQC computing a Boolean function $o: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2$ with an average success probability p_S . If

$$p_S > 1 - \frac{\mathbb{H}(o)}{2^m},$$

with $\mathbb{H}(o)$ the Hamming distance of o to the closest linear function, then this MBQC is contextual.

R. Raussendorf, PRA, 2013.

⊕,

Theorem 3. Consider an MBQC \mathcal{M} characterized by a contextual fraction $CF(\mathcal{M})$ computing a Boolean function $o: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2$ with an average success probability p_S . Then it holds that

$$p_S \leq 1 - \frac{1 - CF(\mathcal{M})}{2^m} \mathbb{H}(o).$$

 \bullet The larger the contextual fraction, the higher p_S can be.

S. Abramsky, R.S. Barbosa, and S. Mansfield, Phys. Rev. Lett. 119, 050504 (2017).

Ð

In MBQC, quantumness is required in the form of contextuality

Theorem 1: An MBQCs that deterministically computes a non-linear Boolean function is contextual.

J. Anders and D. Browne, PRL 102, 050502 (2009).

R. Raussendorf, PRA, 2013.

Pirsa: 24040091 Page 22/39

Example: Mermin's star

O,

Theorem 2. Consider an MBQC computing a Boolean function $o: \mathbb{Z}_2^m \longrightarrow \mathbb{Z}_2$ with an average success probability p_S . If $p_S > 1 - \mathbb{H}(o)/2^m$, then this MBQC is contextual.

Here, m=2 and $\mathbb{H}(\mathsf{OR})=1$, hence the threshold is

$$p_{S,crit} = \frac{3}{4}.$$

This coincides with the Mermin inequality

The cohomology of contextuality

⊕,

• Convert Mermin's star into a chain complex.

Pirsa: 24040091 Page 24/39

Parity proofs—cohomological version

⊕,

• β is a function defined on the faces,

$$T_a T_b T_{a+b} = (-1)^{\beta(a,b)} I, \quad [T_a, T_b] = 0 \text{ etc.}$$
 (1)

- ullet eta contains all relevant information about the observables T_x
- β is a 2-cochain, $\beta: C_2 \longrightarrow \mathbb{Z}_2$. In fact, β is a 2-cocycle, $d\beta = 0$. (follows from $(T_aT_b)T_c = T_a(T_bT_c)$.)
- If β is a non-trivial cocycle ($\beta \neq d\chi$ for any χ), then the setting is contextual.

(No consistent context-independent value assignment exists.)

Cohomological parity proofs

 $\beta(a,b)$

• Recall: $T_a T_b T_{a+b} = (-1)^{\beta(a,b)} I$, for all faces (a,b).

$$s(a)+s(b)+s(a+b) = \beta(a,b)$$

- Any ncHVM value assignment s is a 1-cochain, $s: C_1 \longrightarrow \mathbb{Z}_2$. $(-1)^{s(a)}$ is the "measured" eigenvalue of T_a , for all $a \in E$.
- Eq. (1) implies a relation between β and s (mod 2),

$$\beta = ds$$
.

If β is a non-trivial cocycle, then no nc value assignment exists.

C. Okay, S. Roberts, S. Bartlett, R. Raussendorf, Quant. Inf. Comp. 17, 1135-1166 (2017).

Cohomology & Mermin's star

- Two facts:
 - For the faces $f_1,..,f_8$ it holds that $\beta(f_i) = 0$.
 - For the entire surface $F = \sum_{i=1}^{8} f_i$ it holds that $\partial F = b$

Contextuality proof: Assume an nc value assignment exists.

$$0 = \int_F \beta = \int_F ds = \int_{\partial F} s = 1 \mod 2$$

Contradiction.

β_{Ψ} and computational output

⊕,

The output function o is contained in β_{Ψ} ,

$$o \subseteq \beta_{\Psi}$$
.

(shown here only for the GHZ-MBQC, but holds in general)

The state-dependent version

Ֆ₊

- Contract the chain complex into a smaller one.
- Merge cocycle β and partial assignment s_{Ψ} into a new cocycle $\beta_{\Psi} := \beta + ds_{\Psi} \mod 2$.
- If $[\beta_{\Psi}] \neq 0$ then the MBQC setting is contextual.

Here:
$$1 = \int_F \beta_{\Psi} = \int_F ds = \int_{\partial F} s = 0$$
. Contradiction.

Summary of the recap

contextuality

The cocycle class $[\beta_{\Psi}] \in H^2(\mathcal{C}_R, \mathbb{Z}_2)$ describes temporal flat MBQCs. Namely,

- ullet eta_{ψ} contains the computed function o
- ullet $[eta_{\psi}]$ is a contextuality witness
- \bullet $[\beta_{\psi}]$ is a witness for the nonlinearity of the computed function

There is also a probabilistic version of this.

R. Raussendorf, Cohomological framework for contextual quantum computations,

Quant. Inf. Comp. 19, 1141 - 1170 (2019).)

Pirsa: 24040091 Page 30/39

The new example

⊕,

Old example: GHZ state

realizes this circuit:

Trivial propagation - flat temporal order

New example: 1D cluster state

realizes this circuit:

Non-trivial propagation - temporal order

The new ingredient

⊕,

Pirsa: 24040091 Page 32/39

What changes

⊕,

nn

The observables T_i of interest have block-diagonal form,

$$T_i = \Pi T_i \Pi + \overline{\Pi} T_i \overline{\Pi}$$

The observables commute,

$$[T_i, T_j] = 0, \forall i, j.$$

The observables commute on the subspace given by Π ,

$$[\Pi T_i \Pi, \Pi T_j \Pi] = 0, \ \forall i, j.$$

The observables are dependent,

$$T_1T_2T_3 = (-1)^{\beta}I.$$

The observables are dependent on the subspace given by Π ,

$$(\Pi T_1 \Pi) (\Pi T_2 \Pi) (\Pi T_3 \Pi) = (-1)^{\beta} \Pi.$$

The new face describes ..

.. an individual act of measurement

0,

The observables I(t) measure the X (Z) component of the byproduct operator at even (odd) times.

Two more things:

(i)

₾,

The projectors too are related to the information flow observable,

$$\pi_{t-1,0} = \frac{I + \mathbf{I}(t-1)}{2}, \ \pi_{t-1,1} = \frac{I - \mathbf{I}(t-1)}{2}$$

Two more things:

(ii)

₾,

"information flow" observable, collects byproduct operators

projector representing the value of q_t $O_t[q_t=0] \quad \pi_{t-1} \quad O_t[q_t=1]$

Two faces are needed to describe the act of a single measurement, one for Π_0 and one for Π_1 .

What an algorithm now looks like

Let's take the duality out to simplify ..

Pirsa: 24040091 Page 37/39

Action of the HVM on the chain complex

⊕,

At time t, the observables $\mathbf{I}(t-2)$, $\mathbf{I}(t-1)$ already have been assigned values, and $O_t[q]$ have a value straight from the HVM.

Pirsa: 24040091 Page 38/39

What an algorithm now looks like

 $\pi_{t-1,0}$ for $\sigma_t = 0$ for

A pair of interconnected (dual) complexes.

Pirsa: 24040091 Page 39/39