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Abstract: Both the social and natural world are replete with complex structure that often has a probabilistic interpretation. In the former, we may
seek to model, for example, the distribution of natural images or language, for which there are copious amounts of real world data. In the latter, we
are given the probabilistic rule describing a physical process, but no procedure for generating samples under it necessary to perform simulation. In
this talk, |1 will discuss a generative modeling paradigm based on maps between probability distributions that is applicable to both of these
circumstances. | will describe a means for learning these maps in the context of problemsin statistical physics, how to impose symmetries on them
to facilitate learning, and how to use the resultant generative models in a statistically unbiased fashion. | will then describe a paradigm that unifies
flow-based and diffusion based generative models by recasting generative modeling as a problem of regression. | will demonstrate the efficacy of
doing thisin computer vision problems and end with some future challenges and applications.
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Complexity all around

Michael Samuel Albe...

The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data

Sora (2024): “A flower growing
out on the windowsill”
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Complexity all around

Y W %,
Michael Samuel Albe... h

The social and natural worlds are replete with complex
structure that often has a probabilistic interpretation

Social: abundance of data Natural: limited data, but theory

Molecular
conformation

Sora (2024): “A flower growing
out on the windowsill” Forecasting
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Ascendancy of generative modeling

Michael Samuel Albe...
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Problem Setup

Goal: estimate the unknown probability density function p; € (L) either through:
1. sample data {x;}}_,
2. query access to the unnormalized log likelihood

= measure transport perspective

RealNVP |
G ANS! VAES - !
o \ o éo ‘ "
~N v
S m.ﬁ-
v
ek,
- Ay -
B ¢
pixelRNN
Boltzmann
Machines How can measure transport help us understand these

successes and build more performant, understandable tools? .
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Problem Challenge
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Problem Setup

Goal: estimate the unknown probability density function p; € (L) either through:
1. sample data {x;}]_,
2. query access to the unnormalized log likelihood

The transport framework

» Take a simple base density p, (e.9. Gaussian) and;

» Build a (reversible) map T : Q — Q such that the pushforward of pyby Tis py:  Thpy = py

T

Po #0 P1
a oS
- =

Likelihood under p(1) given by: p1(x;) = po(T~1(x)) det[ VT 1(x)]
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Problem Setup

The transport framework Mighael samuel Abe..
* Build a (reversible) map T : Q — € such that the pushforward of p(0) by T'is p(1):  T#p(0) = p(1)

. Po e L P
L -
- E

Likelihood: p;(x) = po(T~1(x)) det[ VT (x)]

For parametric T(x) to be useful

e det[ VT~ 1(x)] to be tractable
. > Tradeoff!
e 7(x) maximally unconstrained
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Problem Setup

The transport framework
* Build a (reversible) map T : Q — € such that the pushforward of p(0) by T'is p(1):  T#p(0) = p(1)

. Po # A1
a -
- =
Likelihood: p;(x) = po(T~1(x)) det[ VT 1(x)]
Generative modeling Domain Adaptation Forecasting
: : l
— = &
—— —_ ®
|
Ex. Image generation : Ex. Climate/weather
Ex. Statistical physics Ex. Transtation Ex. Dynamical systems
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Problem Setup

The transport framework

How do we harness measure transport for these
various tasks in probabilistic modeling? How do we
learn these maps?
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Brief history on transport realizations

_:"f@h

Michael Samuel Albe... =

Series of discrete transforms
det[ VT~ !(x)] tractable, but too constrained?

T} learned sequentially

Chen & Gopinath, NeurlPS 13 (2000); . T# Lo
Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); 0 fopp
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164
(2013).
-~ ! -~ -
i i T T, it Tk
T}, structured invertible NNs — —

NICE: Dinh et al. arXiv:1410.8516 (2014);

Real NVP: Dinh et al. arXiv:1605.08803 (2016)
Rezende et al., arXiv:1505.05770 (2015);
Papamakarios et al. arXiv:1912.02762 (2019); ...
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Brief history on transport realizations

Series of discrete transforms
det[ VT~ (x)] tractable, but too constrained?

T} learned sequentially

Chen & Gopinath, NeurlPS 13 (2000); s T# Lo P 1
Tabak & V.-E., Commun. Math. Sci. 8: 217-233 (2010); Po fopp
Tabak & Turner, Comm. Pure App. Math LXVI, 145-164
(2013).

T T Ti+1 Tk

L — -~
T}, structured invertible NNs -
NICE: Dinh ef al. arXiv:1410.8516 (2014);
Real NVP: Dinh et al. arXiv:1605.08803 (2016)
Rezende et al., arXiv:1505.05770 (2015);

Papamakarios et al. arXiv:1912.02762 (2019); ...

k= oo ob,

—1 — af
T solution of e L dx(t)]

continuous time flow e estimable via Skilling-Hutchinsion O(D)

FFJORD: Grathwonhl et al. arXiv:1810.01367 (2018)

e integrable with Neural ODEs

Page 14/52
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The continuous time picture

SN o !
Michael Samuel Albe... (i

X, flow map given by velocity field b(t,x) =1

X_,(x) =x € R?

X,(0) = b(t, X,x))

space
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The continuous time picture

X, flow map given by velocity field b(t, x)

X _o(x) =x € R?

X (x) = b(t, X,(x))

space

At the level of the of the distribution, how does p(?, x) evolve?

Transport 5 o(t,x) + V - (b(t, x)p(t,x)) =0, p(t=0,) = p,

equation

If p(¢) solves TE, then p(t = 1, ) = p,
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The continuous time picture

X, flow map given by velocity field b(z, x)

X_ox) =xeR?

X,() = b(t, X,x))

space

At the level of the of the distribution, how does p(?, x) evolve?

Transport - 5 p(t,x) + V - (b(t, x)p(1,x)) =0, p(t=0,) = p,

equation

If p(f) solves TE, then p(t = 1, ) = p,

Benamou-Brenier theory says that How to find a sufficient
b(t, x) exists (assuming Lipschitz) b(t, x) to map p, to p,?
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Solving for b(t, x) solves the transport

Is there a simple paradigm for learning b(z, x)?

Dream scenario: figure out a way to perform regression on the velocity field

=1
mjn-[ | b(2, x) — b(t, x) |* p(t, x)dxdt
b Ji=0

Problems:

« Don’t have a fixed b(, x) to regress on

- Don’t have a p(t, x) to sample from!

How can we work exactly on t € [0,1] with arbitrary p, and p,,
build a connection between them, and get the velocity b(t, x) directly?
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Stochastic Interpolants

. MSA & Vanden-Eijnden arXiv:2209.15571 (2022);
Interpolant Function x(t, x,, X;) ! ’

- A function of x5, x;, and time # with b.c.’s: x,_y = Xpand x,_; = Xx;

- Example: x(z, x5, x;) = (1 — t)xgy + tx,

T~ pp, = 0.0

If xo, x; drawn from some p(xy, X;),
then x(z, xy, x;) is a stochastic
process which samples x, ~ p(z, x)

o 2

t=0.0

Interpolant Density What fixes p(1, x)?

1. Choice of coupling: how to sample X, x;
p(t,x) = [Ep(x(,,.x]) [é(x = x(2, Xp; xl))] simple example: p(x, X;) = po(xp)p;(x;)
2. Choice of interpolant x(t, x;, x,):

Page 19/52
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Stochastic Interpolants

2 MSA & Vanden-Eijnden arXiv:2209.15571 (2022); ’ W
Interpolant Function x(z, xy, x;) ! ’ . e

- A function of x;, x;, and time ¢ with b.c.’s: x,_y = xpand x,_; = Xx;

- Example: x(, xp, x;) = (1 — )xy + tx;

Ty ~~ ra._f = (.29

If X, x; drawn from some p(xy, X;),
then x(¢, xy, x;) is a stochastic
process which samples x, o p(t, x)

t=0.29

Interpolant Density e —

1. Choice of coupling: how to sample X, x;
nt.x) = IE,O(IQ,I]) lé(x — x(, xg, xl))] simple example: p(x, X|) = po(xp)p;(x;)
2. Choice of interpolant x(t, x;, x;):
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Stochastic Interpolants

MSA & Vanden-Eijnden arXiv:2209.15571 (2022);

Interpolant Function x(z, xy, x;)
A function of X, x;, and time ¢ with b.c.’s: x,_y = Xy and x,_; = X;

- Example: x(, x9, x;) = (1 — O)xy + tx;

xp ~ pp. t = 0.29

If xo, x; drawn from some p(xy, X;),
then x(¢, xy, x;) is a stochastic
process which samples x, ~ p(t, x)

t=0.29

Interpolant Density Can sample p(t,x)!

=1
pt,x) = E 1) lé (x — x(t, xg, xl))] mgin J | b(1, x) — b(t, x) |2 p(t, x)dxdt

=0 )

Page 21/52
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Stochastic Interpolants: what is b(7, x)?

Interpolant Function x(z, xy, x;) =t " "
min | b(t, x) — b(t,x) |” p(t, x)dxdt
- Example: x(z, xg, x1) = (1 — t)xy + tx; b Ji=o

« when Xy, x; ~ p(xp, %), X, ~ p(2)
We have samples x, ~ p(t, x) via the interpolant, but what is b(#, x)?
Definition
The p(t, - ) of x, satisfies a transport equation

0,p+ V- (b(t,x)p) =0, p(t=0,-)=p,
and b(t, x) is given as the conditional expectation

b(t,x) = E[d,x(?) | x, = x]

prove with characteristic function, sketch in backup slides.
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Stochastic Interpolants: Simple Objective

rt=1
min | | b(z, x) — b(t, x) |* p(t, x)dxdt
b Ji=0 plug in definition of
. ,\ b(t, )
min J | E[0,x(2)| x, = x] — b(t, x) |* p(t, x)dxdt
b Ji—o JRd
E[9.x(1 _ + D= 3.x(t Note: definition of
JW (00| x, = x1p(8, %) = E sy [0rX(D)] conditional expectation

Prop.

b(t, x) is the minimizer of
1

L[b] = I E e [|i}(t, (1)) — 8,x(2) |2] dt
0
using shorthand x(#) = x(t, x, x;)
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Stochastic Interpolants: Generative Model

MSA & Vanden-Eijjinden arXiv:2209.15571 (2022);

Flow ma tching Liu et al. arXiv:2209.03003 (2022);
Lipman et al. arXiv:2210.02747 (2022)

Prop.

b(t, x) is the minimizer of

1
L[p] = J E o [|b(t, x(1)) — 0,x(t) |2] dt
0
using shorthand x(¥) = x(, xy, x;)
Loss is directly estimable over p, p;

« Generative model connects any two densities

Likelihood and sampling available via fast ODE integrators

Loss bounds Wasserstein-2 between p(1, x) and p; (Gronwall)

Generative model Xt(x) — b(r, Xt(x))
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Deterministic vs stochastic transport

Example learned flow map

ODE

Time

Deterministic
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Deterministic vs stochastic transport

Example learned flow map What about diffusion?

SDE

ODI

Time

M~

Deterministic Stochastic

A simple set of criteria fulfills this
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The interpolant score s(z, x)

MSA, Boffi, Vanden-Eijinden arXiv:2303.08797 (2023)
Introduce Gaussianity into the interpolant

\ where z ~ N(0,1)
x(t) = I(z, X0» x1) + y()z and y(0) =y(1) =0

e.g. y(t) =/t(1 —1)
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The interpolant score s(?, x)

MSA, Boffi, Vanden-Ejjnden arXiv:2303.08797 (2023)

Introduce Gaussianity into the interpolant

where z ~ N(0,1)
x(1) = I(t, xp, x1) + 7()z and 7(0) = y(1) = 0
e.g. y(1) =/1(1 — 1)
Proposition:

p(t, x) satisfies a transport equation as before, with b(¢, x) of the form
b(t,x) = E[0,I(t, xo, x,) + 0,y(1)z| x(2) = x|
Moreover, the score of p(t, x) is given by
86, %) = =y 'Ez|x() = x]
which minimizes

JHE = JE B | §(t, x,) |2 +y() 'z - 52, x,)] dt

Page 28/52
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Unifying flow-based and diffusion-based generative models

MSA & Vanden-Eijinden arXiv:2209.15571 (2022)
MSA & Boffi, Vianden-Eijnden arXiv:2303.08797 (2023)

Transport equation Fokker-Planck Equations

0,0+ V - (bBp) = eAp

o.p+ V- -(bp)=0
P s where b¥B = b + ¢5

ODE SDE
d
. X,=b(tX,) dX™® = beyp (1, XF) dt +1/2edWFB
t
Learn l; Learn EF/B

Are there fundamental differences between stochastic
deterministic generative models?
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Bounding the KL between p and p

MSA, Boffi, Vanden-Eijinden arXiv:2303.08797 (2023);

Michael Samuel Albe... |-

If p the.dt.en?lty pusht.-:-d tly estimated at p+V-(bp)=0
deterministic dynamics b, then r

1
KL(p(D)I|A(1)) = J J (Viogp — Vlogp) - (b — bypdx dr
0 JR¢ matching b's does not
"hﬁﬁﬁh““‘ bound KL, Fisher is
uncontrolled by small error

inb—>b
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Bounding the KL between p and p

MSA, Boffi, Vanden-Eijinden arXiv:2303.08797 (2023);

If p the.dt.en'sﬂy push.ed tly estimated at p+V-(bp)=0
deterministic dynamics b, then

1
KL(p(D)IIA(1)) = J [ (Vlogp — Viogp) - (b — bypdx dr
0 /R matching b's does not
\ bound KL, Fisher is
uncontrolled by small error

If ) the density pushed by estimated inb—b

stochastic dynamics bp = b + €, 0.p+V-(b'p)=eAp
then

= 2
b — bp‘ p dxdt
hiea BF — by does control KL

divergence

1 1
KL(p(D)IIA(D) < —J [
Rd

N
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ODE vs SDE, numerical experiments

What does this mean practically? Theory says

£ A 1/
S (Lb[b] — minj L[] )
: y . . ~\ L[8] — min; L[§
128 dimensional Gaussian Mixtures 5{5] = ming L5)
e=0 €c=4.0 €c=120
p1(x,y) — py(x,y): Error in ® 101 | ] ] '
kernel density estimate of 2D < s
cross section = 01 ~ A~ i

(v, 8) —e=— (b, 8)

0.03 A (v,m) —o— (b, 7)
KL for learned b, § minimal B e

around € ~ 5.0, then §

increases 0.01

0'00 L T T T T

*SDE dominance not 0 . 18

necessarily generalize to images '

Pirsa: 24040087
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Michael Samuel Albe... |

Context and Applications

Generative modeling Domain Adaptation Forecasting
rd \\ ‘ .‘
/__f/-’?' /
S —_—  » L
\‘\\___’ \\\
3 \ _
Ex. Image generation Ex. Translation Ex. Climate/weather
Ex. Statistical physics Ex. Superresolution Ex. Dynamical systems

We will use the design flexibility of the interpolant and the
coupling between X, x; to approach various problems

27
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Context: Relation to Score-Based Diffusion (SBDM)

Song et al. arXiv:2011.13456 (2021)
Sohl-Dickstein et al arXiv:1503.03585 (2021) Michael Samuel Abe... 8

)

)

(

v: (
SBDM introduces a noising process . FyVErnen. LR 6 2005
Vincent, Neural Comp. 23, 1661 (2011

dX, = — Xdt ++/2dW, — o

Generative model
5(t,x) = Vlog p(t, x)

dXB = — X, dt + Vlog p(t,X,) dt + /2 dW, 4———

When recasted as an interpolant:

x(t) =xe '+ V1 —ez, xy~py z~N(@OJId), te][0,c0)

Y,

These coefficients are fixed by Only maps to a Gaussian
the noising process above and does so in infinite time

SBDM is but one possible interpolant!

April 11, 2024 28
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Example: Interpolants for image generation

MSA & EVE arXiv:2209.15571 (2022);
NM, MG, MSA, NB, EVE, SX arXiv:2401.08740 (2024)

Freedom to choose a, f in:
x(1) = a()xy + p()x,

to reduce transport cost:

1
— 2 Model Params(M) Training Steps FID |
C[b] - J IE[ I b(t’ x) | ]dt Frechet Inception Distance 2‘;2 :: j{gi ;52
0 ors | DITB 130 400K 435
- SIT-B 130 400K 335
. DIT-L 458 400K 233
SITL 458 400K 18.8
DIT-XL 675 400K 195
. . SIT-XL 675 400K 17.2
Freedom to choose €(t) in: 1x i *| bt 675 ™ 96
) R . I T B
dXI —_ bF dt 4 2€(I)dm SITXL getsy 675 ™ 2.06
to tighten bounds on: Systematic improvements to
Dy, (5, | methods underlying, e.g.
xkt(P111pD) Sora (OpenAl, 2024)
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MSA*, Goldstein®, Boffi, Ranganath, Vanden-Eijnden 2310.03725 (2023)

Designing different couplings

One is free to construct a variety
of couplings, following the rules!

For any coupling (xy, X;) and any conditioning set &, the joint must marginalize

[ p (%o x; | €) dxy = py (%0 | ), J p (x0, %, | E) dxg=py (2, | £) -
Rd

Rd

Recent example in literature: minibatch OT (Tong et al (2023), Pooladian et al 2023)

Rather than use an approximate algorithm for constructing such
couplings, there are many that we have natural access to
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Example: Data-dependent coupling

MSA, MG, NB, RR, EVE arXiv:2310.03725 (2023)
MSA, NB, ML, EVE arXiv:2310.03695 (2023) Michael Samuel Albe...

What if one x;, is coupled to another x;?

p(xp, X1) = py(x)po(xXp | 1)

In-painting Super-resolution
X, @ masked image X, a low-res image
b(t, x) invariant in unmasked areas X, now proximal to its target
b o— . - - F r ‘, : e ‘-'

5 1

¢

Frechet Inception Distance

Model Train  Valid
Improved DDPM (Nichol & Dhariwal, 2021) 1226 -
SR3 (Saharia et al., 2022) 1.30 520
ADM (Dhariwal & Nichol, 2021) 7.49 3.10
Cascaded Diffusion (Ho et al., 2022a) 4.88 4,63
I2SB (Liu et al., 2023a) 2.70
Dependent Coupling (Ours) 213 2.05
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MSA*, Goldstein®, Boffi, Ranganath, Vanden-Eijnden 2310.03725 (2023) |

Designing different new types of maps

Use interpolant blueprint to learn coefficients of new
types of generative models

Example: are there processes that allow me to predict ensembles of future
events given just one condition?

Weather @J @‘_J @ y @

Dynamical systems i+l yt+2

Time B

What specific processes can we construct to meet these goals?
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Parameterizing the Follmer process

Interpolant ( ‘

x(2) = a(Oxy + f(O)x; + o(th/1z k

»
(X9, x1) ~ p(xp, x1), 2~ N(O,1p) with z L (xy, x;)
. . J/
Reference Dynamics '
Xo ~ Po X ~ px |x0)
r([) = d’(t)xo -+ ﬁ(t)xl -+ O'(t)\/;Z Sior i T “Ensemble of weather

predictions for time s + Af”

Learning b(t, x, x,) = E[r(?) | x(?) = x, x;] solves the SDE
dX, = b(t, X, xp)dt + o()dW,

such that:
Law(X,) = Law(x, | xy), with X ._; ~ p.(x; | Xp)
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Example: Probabilistic forecasting

( § YC, MG, MH, MSA, NB, EVE arXiv:2402.XXXXX (2024)
\j Interpolants for ensembles of future events

p (X, X1) = po(xp)p1 (% [ X0)

Navier Stokes Ensemble of w,,,

Evolution of the vorticity

Map w, to distribution p(w,, .| ®,)

Choose NS w/ random forcing
that has invariant measure

Video completion Real Prediction  Prediction
L)
Map x, to distribution p(x,, ;| x,_,.,) i ?' s 40 8¢
Roll out subsequent frames ) ] L]
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Multimarginal Interpolants

The learning paradigm behind interpolants (and diffusions!) can be
independent of interpolation schedule (e.g. noise schedule)

Generic 2-marginal interpolant, with interpolation coordinates a = (o, ;]
x(1) = ap(t)xg + a;(H)x;

gives velocity field
b(t,x) = E [x() | x(t) = x| = ayOE |xo | x(®) = x| + &, ()E |x; | x(2) = x|

/ /

call go(z, x) call g,(z,x)

All you need to learn are conditional expectations, learned on an interval.
To use it in an ODE, you can choose a time parameterization after
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ODE vs SDE, numerical experiments

What does this mean practically? Theory says p ‘ = x 8
. (Lb[b] — min;, L[] )

~ \ L,[§] — min; L[3]

128 dimensional Gaussian Mixtures

e=10 c=4.0 €c=12.0

p1(x,y) — py(x,y): Errorin % 1 - E
kernel density estimate of 2D < o
cross section = 0 e ¥y 1 '

(v,8) === (b, )

0.03 (v,n) == (b, n)

KL for learned b, § minimal X 002
around € ~ 5.0, then §
increases 0.01 1
000 B T T T T
*SDE dominance not 0 B L 15

necessarily generalize to images
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IMichael Samuel Albe...

Multimarginal Interpolants

The learning paradigm behind interpolants (and diffusions!) can be
independent of interpolation schedule (e.g. noise schedule)

Generic 2-marginal interpolant, with interpolation coordinates a = [, a;]
x(1) = ap(t)xy + a(H)x;

gives velocity field
b(t,x) = E [x(t) | x(2) = x| = a(DE [x | x(®) = x| + &,(DE [x, | x(?) = x]

/ /

call go(z, x) call g,(z,x)

All you need to learn are conditional expectations, learned on an interval.
To use it in an ODE, you can choose a time parameterization after
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Multimarginal Interpolant

MSA, Boffi, Lindsey, Vanden-Eijnden, arXiv:2310.03695 (2023)
But also note !

K
Nothing is stopping you from x(a) = z X,
interpolating between more densities =0

The minimal conditions are

2a,3>0, Zakz<C2
k k

a a coordinate vector on the surface
of, or within an K—sphere of radius C
£o

Slightly more pragmatic (?)
condition: Z o =1
k

a a coordinate vector on the K—
simplex
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Multimarginal Interpolants

The learning paradigm behind interpolants (and diffusions!) can be
independent of interpolation schedule (e.g. noise schedule)

Generic 2-marginal interpolant, with interpolation coordinates a = [, o]
x(1) = ap(t)xy + a(H)x;

gives velocity field
b(t,x) = E [x(2) | x(®) = x| = ayDE |xo | x(®) = x| + &,()E |x; | x(1) = x|

/ /

call go(z, x) call g,(z, x)

All you need to learn are conditional expectations, learned on an interval.
To use it in an ODE, you can choose a time parameterization after
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Multimarginal Interpolant

MSA, Boffi, Lindsey, Vanden-Eijnden, arXiv:2310.03695 (2023)
But also note !

K
Nothing is stopping you from x(a) = z X,
interpolating between more densities =0

The minimal conditions are

Y a2>0, D al<(? Sasaees
k k
a a coordinate vector on the surface
of, or within an K—sphere of radius C

Slightly more pragmatic (?)
condition: Z =1
k

a a coordinate vector on the K—
simplex
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Multimarginal Interpolant

MSA, Boffi, Lindsey, Vanden-Eijnden, arXiv:2310.03695 (2023)
Definition

The barycentric interpolant x(a) with @ = (g, ..., ag) € Ak is the
stochastic process

K
x(a) = z X
k=0

where (xq, ..., Xg) are drawn from p(xy, ..., xXg) and we set x, ~ N(0,/d,)
drawn independently (x, needed if you want score function).

Generalized continuity equation

The probability distribution of x(a) has a density p(a, x) which satisfies
K + 1 continuity equations

dap(@) V, - (gla, x)p(a)) = 0

where g,(a, x) is the conditional expectation E[x; | x(a) = x]
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Multimarginal Interpolant ‘%

Michael Samuel Albe...

MSA, Boffi, Lindsey, Vanden-Eijnden, arXiv:2310.03695 (2023)

Once you have learned the g;, you can any path on the
simplex as a generative model from any p; to any p;

- Just choose a parameterization of a(¢) for t € [0,1] that
starts and ends at one of the marginal densities, e.g.

a(t =0)=[1,0,...,0]and a(t = 1) = [0,...,1,...,0]

K
Velocity field b(t,x) = )" a(Dgy(a(), x)
k=0
Probability flow ODE X, = b(t,X,)
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A geometric algorithm for selecting a performant o

Much effort has gone into choosing an appropriate noise schedule for it S Ae.
diffusions. The multimarginal picture gives a straightforward algorithm

2

| K
C (&) = mjn[ E || D adga®,x@w)| | dt
“ 70 k=0

Riemannian geometric “path length” depends on a(7)
- reduce transport cost over restrigted class to learn better b(7, x).
- Extremely simple optimization of &

Learned path
t 3T

t=0 t=1/7 t=2f7 t=4/7 £=5/T t=1

| | ‘ .

AR JE A g
| . ‘ L

Standard linear path

Path length C

RS

200
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Applications, different paths on simplex

6 classes of MNIST digits as marginals Ay

Generate from same initial condition More natural style—t_ransfer by
to anywhere on 6-simplex learning on whole simplex

Sample from the empirical
barycenter
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More Applications

Michael Samuel Atl;e.‘. 3

Simultaneous access

to marginal sampling Natural style transfer
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Part 1 summary

Laying out some tools to work with dynamical
measure transport and generative modeling

Approaching some of these topics from an
applied maths perspective can give some
better control on performance and methods
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