Title: Measure Transport Perspectives on Sampling, Generative Modeling, and Beyond

Speakers: Michael Albergo

Series: Machine Learning Initiative
Date: April 12, 2024-2:30 PM
URL: https://pirsa.org/24040087
Abstract: Both the social and natural world are replete with complex structure that often has a probabilistic interpretation. In the former, we may seek to model, for example, the distribution of natural images or language, for which there are copious amounts of real world data. In the latter, we are given the probabilistic rule describing a physical process, but no procedure for generating samples under it necessary to perform simulation. In this talk, I will discuss a generative modeling paradigm based on maps between probability distributions that is applicable to both of these circumstances. I will describe a means for learning these maps in the context of problems in statistical physics, how to impose symmetries on them to facilitate learning, and how to use the resultant generative models in a statistically unbiased fashion. I will then describe a paradigm that unifies flow-based and diffusion based generative models by recasting generative modeling as a problem of regression. I will demonstrate the efficacy of doing this in computer vision problems and end with some future challenges and applications.

Zoom link

Thanks to collaborators and mentors!!!!!!!!!

Complexity all around

The social and natural worlds are replete with complex structure that often has a probabilistic interpretation

Social: abundance of data

Sora (2024): "A flower growing out on the windowsill"

Natural: limited data, but theory

4

Complexity all around

The social and natural worlds are replete with complex

 structure that often has a probabilistic interpretationSocial: abundance of data

Sora (2024): "A flower growing out on the windowsill"

Natural: limited data, but theory

Forecasting

Ascendancy of generative modeling

Problem Setup

Goal: estimate the unknown probability density function $\rho_{1} \in \mathscr{D}(\Omega)$ either through:

1. sample data $\left\{x_{i}\right\}_{i=1}^{n}$
2. query access to the unnormalized log likelihood

How can measure transport help us understand these successes and build more performant, understandable tools?
April 11, 2024
Aprin, 2024

Agenda

Part 1: New algorithms for dynamical measure transport

Problem Challenge

Stochastic Interpolants

Applications

Artificial

Part 2: Statistically robust ML for statistical physics

Learning without data

Non-Euclidean data

Symmetries

Natural

Problem Setup

Goal: estimate the unknown probability density function $\rho_{1} \in \mathscr{D}(\Omega)$ either through:

1. sample data $\left\{x_{i}\right\}_{i=1}^{n}$
2. query access to the unnormalized log likelihood

The transport framework

- Take a simple base density ρ_{0} (e.g. Gaussian) and;
- Build a (reversible) map $T: \Omega \rightarrow \Omega$ such that the pushforward of ρ_{0} by T is $\rho_{1}: \quad T \sharp \rho_{0}=\rho_{1}$

Likelihood under $\rho(1)$ given by: $\rho 1\left(x_{1}\right)=\rho_{0}\left(T^{-1}(x)\right) \operatorname{det}\left[\nabla T^{-1}(x)\right]$

Problem Setup

The transport framework

- Build a (reversible) map $T: \Omega \rightarrow \Omega$ such that the pushforward of $\rho(0)$ by T is $\rho(1)$: $\quad T \sharp \rho(0)=\rho(1)$
ρ_{0}

Likelihood: $\rho_{1}(x)=\rho_{0}\left(T^{-1}(x)\right) \operatorname{det}\left[\nabla T^{-1}(x)\right]$
For parametric $\hat{T}(x)$ to be useful

- $\operatorname{det}\left[\nabla \hat{T}^{-1}(x)\right]$ to be tractable
- $\hat{T}(x)$ maximally unconstrained

Problem Setup

The transport framework

- Build a (reversible) map $T: \Omega \rightarrow \Omega$ such that the pushforward of $\rho(0)$ by T is $\rho(1)$: $\quad T \sharp \rho(0)=\rho(1)$

Generative modeling

Ex. Image generation Ex. Statistical physics

April 11, 2024

Domain Adaptation

Ex. Translation

10

Forecasting

Ex. Climate/weather Ex. Dynamical systems

Problem Setup

The transport framework

- Build a (reversible) map $T: \Omega \rightarrow \Omega$ such that the pushforward of $\rho(0)$ by T is $\rho(1)$
$T_{\#} \rho_{0}$
ρ_{0}

How do we harness measure transport for these various tasks in probabilistic modeling? How do we learn these maps?

Ex. Image generation
Ex. Statistical physics
April 11, 2024

Ex. Translation

11

Ex. Climate/weather
Ex. Dynamical systems

Brief history on transport realizations

Series of discrete transforms

T_{k} learned sequentially
Chen \& Gopinath, NeurIPS 13 (2000);
Tabak \& V.-E., Commun. Math. Sci. 8: 217-233 (2010); Tabak \& Turner, Comm. Pure App. Math LXVI, 145-164 (2013).

T_{k} structured invertible NNs

NICE: Dinh et al. arXiv:1410.8516 (2014);
Real NVP: Dinh et al. arXiv:1605.08803 (2016) Rezende et al., arXiv:1505.05770 (2015); Papamakarios et al. arXiv:1912.02762 (2019); ..
$\operatorname{det}\left[\nabla T^{-1}(x)\right]$ tractable, but too constrained?

Brief history on transport realizations

Series of discrete transforms T_{k} learned sequentially

Chen \& Gopinath, NeurIPS 13 (2000);
Tabak \& V.-E., Commun. Math. Sci. 8: 217-233 (2010); Tabak \& Turner, Comm. Pure App. Math LXVI, 145-164 (2013).
T_{k} structured invertible NNs
NICE: Dinh et al. arXiv:1410.8516 (2014);
Real NVP: Dinh et al. arXiv:1605.08803 (2016)
Rezende et al., arXiv:1505.05770 (2015);
Papamakarios et al. arXiv:1912.02762 (2019);
$k \rightarrow \infty$

T solution of continuous time flow

FFJORD: Grathwohl et al. arXiv:1810.01367 (2018)
$\operatorname{det}\left[\nabla T^{-1}(x)\right]$ tractable, but too constrained?
ρ_{0}

$$
T_{\#} \rho_{0}
$$

- $\operatorname{det}\left[\nabla T^{-1}(x)\right] \rightarrow \operatorname{Tr}\left[\frac{\partial b_{t}}{\partial x(t)}\right]$
- estimable via Skilling-Hutchinsion $O(D)$
- integrable with Neural ODEs

The continuous time picture

X_{t} flow map given by velocity field $b(t, x)$

$$
\begin{aligned}
& X_{t=0}(x)=x \in \mathbb{R}^{d} \\
& \dot{X}_{t}(x)=b\left(t, X_{t}(x)\right)
\end{aligned}
$$

space

The continuous time picture

X_{t} flow map given by velocity field $b(t, x)$

$$
\begin{aligned}
& X_{t=0}(x)=x \in \mathbb{R}^{d} \\
& \dot{X}_{t}(x)=b\left(t, X_{t}(x)\right)
\end{aligned}
$$

At the level of the of the distribution, how does $\rho(t, x)$ evolve?
$\begin{gathered}\text { Transport } \\ \text { equation }\end{gathered} \partial_{t} \rho(t, x)+\nabla \cdot(b(t, x) \rho(t, x))=0, \quad \rho(t=0, \cdot)=\rho_{0}$ If $\rho(t)$ solves TE, then $\rho(t=1, \cdot)=\rho_{1}$

The continuous time picture

X_{t} flow map given by velocity field $b(t, x)$

$$
\begin{aligned}
& X_{t=0}(x)=x \in \mathbb{R}^{d} \\
& \dot{X}_{t}(x)=b\left(t, X_{t}(x)\right)
\end{aligned}
$$

At the level of the of the distribution, how does $\rho(t, x)$ evolve?

$$
\begin{gathered}
\text { Transport } \\
\text { equation }
\end{gathered} \partial_{t} \rho(t, x)+\nabla \cdot(b(t, x) \rho(t, x))=0, \quad \rho(t=0, \cdot)=\rho_{0}
$$

If $\rho(t)$ solves TE, then $\rho(t=1, \cdot)=\rho_{1}$

Benamou-Brenier theory says that $b(t, x)$ exists (assuming Lipschitz)

How to find a sufficient $b(t, x)$ to $\operatorname{map} \rho_{0}$ to $\rho_{1} ?$

Solving for $b(t, x)$ solves the transport

Is there a simple paradigm for learning $b(t, x)$?

Dream scenario: figure out a way to perform regression on the velocity field

$$
\min _{\hat{b}} \int_{t=0}^{t=1}|b(t, x)-\hat{b}(t, x)|^{2} \rho(t, x) d x d t
$$

Problems:

- Don't have a fixed $b(t, x)$ to regress on
- Don't have a $\rho(t, x)$ to sample from!

How can we work exactly on $t \in[0,1]$ with arbitrary ρ_{0} and ρ_{1}, build a connection between them, and get the velocity $b(t, x)$ directly?

Stochastic Interpolants

Interpolant Function $x\left(t, x_{0}, x_{1}\right)$

- A function of x_{0}, x_{1}, and time t with b.c.'s: $x_{t=0}=x_{0}$ and $x_{t=1}=x_{1}$
- Example: $x\left(t, x_{0}, x_{1}\right)=(1-t) x_{0}+t x_{1}$

If x_{0}, x_{1} drawn from some $\rho\left(x_{0}, x_{1}\right)$, then $x\left(t, x_{0}, x_{1}\right)$ is a stochastic process which samples $x_{t} \sim \rho(t, x)$

Interpolant Density
$\rho(t, x)=\mathbb{E}_{\rho\left(x_{0}, x_{1}\right)}\left[\delta\left(x-x\left(t, x_{0}, x_{1}\right)\right)\right]$

$t=0.0$
What fixes $\rho(t, x)$?

1. Choice of coupling: how to sample x_{0}, x_{1}
simple example: $\rho\left(x_{0}, x_{1}\right)=\rho_{0}\left(x_{0}\right) \rho_{1}\left(x_{1}\right)$
2. Choice of interpolant $x\left(t, x_{0}, x_{1}\right)$:

Stochastic Interpolants

Interpolant Function $x\left(t, x_{0}, x_{1}\right)$

- A function of x_{0}, x_{1}, and time t with b.c.'s: $x_{t=0}=x_{0}$ and $x_{t=1}=x_{1}$
- Example: $x\left(t, x_{0}, x_{1}\right)=(1-t) x_{0}+t x_{1}$

If x_{0}, x_{1} drawn from some $\rho\left(x_{0}, x_{1}\right)$, then $x\left(t, x_{0}, x_{1}\right)$ is a stochastic process which samples $x_{t} \sim \rho(t, x)$

$t=0.29$
Interpolant Density
$\rho(t, x)=\mathbb{E}_{\rho\left(x_{0}, x_{1}\right)}\left[\delta\left(x-x\left(t, x_{0}, x_{1}\right)\right)\right]$

April 11, 2024
Ap: 17

Stochastic Interpolants

Interpolant Function $x\left(t, x_{0}, x_{1}\right)$

- A function of x_{0}, x_{1}, and time t with b.c.'s: $x_{t=0}=x_{0}$ and $x_{t=1}=x_{1}$
- Example: $x\left(t, x_{0}, x_{1}\right)=(1-t) x_{0}+t x_{1}$

If x_{0}, x_{1} drawn from some $\rho\left(x_{0}, x_{1}\right)$, then $x\left(t, x_{0}, x_{1}\right)$ is a stochastic process which samples $x_{t} \sim \rho(t, x)$

Interpolant Density
$\rho(t, x)=\mathbb{E}_{\rho\left(x_{0}, x_{1}\right)}\left[\delta\left(x-x\left(t, x_{0}, x_{1}\right)\right)\right]$
$\min _{\hat{b}} \int_{t=0}^{t=1}|b(t, x)-\hat{b}(t, x)|^{2} \rho(t, x) d x d t$
Can sample $\rho(t, x)$!

Stochastic Interpolants: what is $b(t, x)$?

Interpolant Function $x\left(t, x_{0}, x_{1}\right)$

- Example: $x\left(t, x_{0}, x_{1}\right)=(1-t) x_{0}+t x_{1}$

$$
\min _{\hat{b}} \int_{t=0}^{t=1}|b(t, x)-\hat{b}(t, x)|^{2} \rho(t, x) d x d t
$$

- when $x_{0}, x_{1} \sim \rho\left(x_{0}, x_{1}\right), x_{t} \sim \rho(t)$

We have samples $x_{t} \sim \rho(t, x)$ via the interpolant, but what is $b(t, x) ?$
Definition
The $\rho(t, \cdot)$ of x_{t} satisfies a transport equation

$$
\partial_{t} \rho+\nabla \cdot(b(t, x) \rho)=0, \quad \rho(t=0, \cdot)=\rho_{0}
$$

and $b(t, x)$ is given as the conditional expectation

$$
b(t, x)=\mathbb{E}\left[\partial_{t} x(t) \mid x_{t}=x\right]
$$

prove with characteristic function, sketch in backup slides.

Stochastic Interpolants: Simple Objective

$$
\begin{aligned}
& \min _{\hat{b}} \int_{t=0}^{t=1}|\hat{b}(t, x)-b(t, x)|^{2} \rho(t, x) d x d t \\
& \min _{\hat{b}} \int_{t=0}^{t=1} \int_{\mathbb{R}^{d}}\left|\mathbb{E}\left[\partial_{t} x(t) \mid x_{t}=x\right]-\hat{b}(t, x)\right|^{2} \rho(t, x) d x d t \\
& \int_{\mathbb{R}^{d}} \mathbb{E}\left[\partial_{t} x(t) \mid x_{t}=x\right] \rho(t, x)=\mathbb{E}_{\rho\left(x_{0}, x_{1}\right)}\left[\partial_{t} x(t)\right]
\end{aligned}
$$

 $b(t, x)$

Prop.

$b(t, x)$ is the minimizer of

$$
L[\hat{b}]=\int_{0}^{1} \mathbb{E}_{\rho\left(x_{0}, x_{1}\right)}\left[\left|\hat{b}(t, x(t))-\partial_{t} x(t)\right|^{2}\right] d t
$$

using shorthand $x(t)=x\left(t, x_{0}, x_{1}\right)$

Stochastic Interpolants: Generative Model

Flow matching
MSA \& Vanden-Eijnden arXiv:2209.15571 (2022); Liu et al. arXiv:2209.03003 (2022);
Lipman et al. arXiv:2210.02747 (2022)
Prop.

- Loss is directly estimable over ρ_{0}, ρ_{1}
- Generative model connects any two densities
- Likelihood and sampling available via fast ODE integrators
- Loss bounds Wasserstein-2 between $\rho(1, x)$ and ρ_{1} (Gronwall)

$$
\text { Generative model } \quad \dot{X}_{t}(x)=b\left(t, X_{t}(x)\right)
$$

Deterministic vs stochastic transport

Example learned flow map

Deterministic

Deterministic vs stochastic transport

Example learned flow map

Deterministic

What about diffusion?

Stochastic

A simple set of criteria fulfills this

The interpolant score $s(t, x)$

Introduce Gaussianity into the interpolant

$$
x(t)=I\left(t, x_{0}, x_{1}\right)+\gamma(t) z \quad \begin{array}{ll}
\text { where } z \sim \mathrm{~N}(0,1) \\
& \text { and } \gamma(0)=\gamma(1)=0 \\
& \text { e.g. } \gamma(t)=\sqrt{t(1-t)}
\end{array}
$$

The interpolant score $s(t, x)$

Introduce Gaussianity into the interpolant

$$
x(t)=I\left(t, x_{0}, x_{1}\right)+\gamma(t) z
$$

$$
\begin{aligned}
& \text { where } z \sim \mathrm{~N}(0,1) \\
& \text { and } \gamma(0)=\gamma(1)=0 \\
& \text { e.g. } \gamma(t)=\sqrt{t(1-t)}
\end{aligned}
$$

Proposition:

$\rho(t, x)$ satisfies a transport equation as before, with $b(t, x)$ of the form

$$
b(t, x)=\mathbb{E}\left[\partial_{t} I\left(t, x_{0}, x_{1}\right)+\partial_{t} \gamma(t) z \mid x(t)=x\right]
$$

Moreover, the score of $\rho(t, x)$ is given by

$$
s(t, x)=-\gamma(t)^{-1} \mathbb{E}[z \mid x(t)=x]
$$

which minimizes

$$
L[\hat{s}]=\int \mathbb{E}\left[\frac{1}{2}\left|\hat{s}\left(t, x_{t}\right)\right|^{2}+\gamma(t)^{-1} z \cdot \hat{s}\left(t, x_{t}\right)\right] d t
$$

Unifying flow-based and diffusion-based generative models

Transport equation

$$
\partial_{t} \rho+\nabla \cdot(b \rho)=0
$$

ODE

$$
\frac{d}{d t} X_{t}=b\left(t, X_{t}\right)
$$

Learn \hat{b}

Fokker-Planck Equations

$$
\begin{gathered}
\partial_{t} \rho+\nabla \cdot\left(b^{\mathrm{F} / \mathrm{B}} \rho\right)=\epsilon \Delta \rho \\
\text { where } b^{\mathrm{F} / \mathrm{B}}=b \pm \epsilon s
\end{gathered}
$$

SDE

$$
d X_{t}^{\mathrm{F} / \mathrm{B}}=b_{\mathrm{F} / \mathrm{B}}\left(t, X_{t}^{\mathrm{F}}\right) d t+\sqrt{2 \epsilon} d W_{t}^{\mathrm{F} / \mathrm{B}}
$$

Learn $\hat{b}_{\mathrm{F} / \mathrm{B}}$

Are there fundamental differences between stochastic deterministic generative models?

Bounding the KL between ρ and $\hat{\rho}$

MSA, Boffi, Vanden-Eijnden arXiv:2303.08797 (2023);

If $\hat{\rho}$ the density pushed by estimated deterministic dynamics \hat{b}, then

$$
\partial_{t} \hat{\rho}+\nabla \cdot(\hat{b} \hat{\rho})=0
$$

$$
\begin{array}{r}
\mathrm{KL}(\rho(1) \| \hat{\rho}(1))=\int_{0}^{1} \int_{\mathbb{R}^{d}}(\nabla \log \hat{\rho}-\nabla \log \rho) \cdot(\hat{b}-b) \rho d x d t \\
\text { matching } b \text { 's does not } \\
\text { bound KL, Fisher is } \\
\text { uncontrolled by small error } \\
\text { in } \hat{b}-b
\end{array}
$$

Bounding the KL between ρ and $\hat{\rho}$

If $\hat{\rho}$ the density pushed by estimated deterministic dynamics \hat{b}, then

$$
\partial_{t} \hat{\rho}+\nabla \cdot(\hat{b} \hat{\rho})=0
$$

$$
\operatorname{KL}(\rho(1) \| \hat{\rho}(1))=\int_{0}^{1} \int_{\mathbb{R}^{d}}(\nabla \log \hat{\rho}-\nabla \log \rho) \cdot(\hat{b}-b) \rho d x d t
$$

If $\hat{\rho}$ the density pushed by estimated stochastic dynamics $\hat{b}_{\mathrm{F}}=\hat{b}+\epsilon s$,

$$
\partial_{t} \hat{\rho}+\nabla \cdot\left(b^{\mathrm{F}} \hat{\rho}\right)=\epsilon \Delta \hat{\rho}
$$

then

$$
\mathrm{KL}(\rho(1) \| \hat{\rho}(1)) \leq \frac{1}{4 \epsilon} \int_{0}^{1} \int_{\mathbb{R}^{d}}\left|\hat{b}_{\mathrm{F}}-b_{\mathrm{F}}\right|^{2} \rho d x d t
$$

ODE vs SDE, numerical experiments

What does this mean practically?

128 dimensional Gaussian Mixtures

Theory says

$$
\epsilon^{*}=\left(\frac{L_{b}[\hat{b}]-\min _{\hat{b}} L_{b}[\hat{b}]}{L_{s}[\hat{s}]-\min _{\hat{s}} L_{s}[\hat{s}]}\right)^{1 / 2}
$$

$\mathbf{K L}$ for learned \hat{b}, \hat{s} minimal around $\epsilon \approx 5.0$, then
increases
*SDE dominance not necessarily generalize to images

April 11, 2024
26

Context and Applications

Generative modeling

Ex. Image generation Ex. Statistical physics

Domain Adaptation

Ex. Translation Ex. Superresolution

Forecasting

Ex. Climate/weather Ex. Dynamical systems

We will use the design flexibility of the interpolant and the coupling between x_{0}, x_{1} to approach various problems

Context: Relation to Score-Based Diffusion (SBDM)

Song et al. arXiv:2011.13456 (2021) Sohl-Dickstein et al arXiv:1503.03585 (2021) Hyvärinen JMLR 6 (2005) Vincent, Neural Comp. 23, 1661 (2011)

SBDM introduces a noising process

These coefficients are fixed by the noising process above

Generative model

$$
\hat{s}(t, x) \approx \nabla \log \rho(t, x)
$$

$$
d X_{t}^{B}=-X_{t} d t+\nabla \log \rho\left(t, X_{t}\right) d t+\sqrt{2} d W_{t}
$$

When recasted as an interpolant:

Only maps to a Gaussian and does so in infinite time

SBDM is but one possible interpolant!

Example: Interpolants for image generation

限
Freedom to choose α, β in:

$$
x(t)=\alpha(t) x_{0}+\beta(t) x_{1}
$$

to reduce transport cost:

$$
C[b]=\int_{0}^{1} \mathbb{E}\left[|b(t, x)|^{2}\right] d t
$$

Freedom to choose $\epsilon(t)$ in:

$$
d X_{t}^{\mathrm{F}}=b_{\mathrm{F}} d t+\sqrt{2 \epsilon(t)} d W_{t}^{\mathrm{F}}
$$

to tighten bounds on:

$$
\mathrm{D}_{K L}\left(\hat{\rho}_{1}| | \rho_{1}\right)
$$

MSA \& EVE arXiv:2209.15571 (2022) NM, MG, MSA, NB, EVE, SX arXiv:2401.08740 (2024)

Model	Params(M)	Training Steps	FID \downarrow
DiT-S	33	400 K	68.4
SiT-S	33	400 K	$\mathbf{5 7 . 6}$
DiT-B	130	400 K	43.5
SiT-B	130	400 K	$\mathbf{3 3 . 5}$
DiT-L	458	400 K	23.3
SiT-L	458	400 K	$\mathbf{1 8 . 8}$
DiT-XL	675	400 K	19.5
SiT-XL	675	400 K	$\mathbf{1 7 . 2}$
DiT-XL	675	7 M	9.6
SiT-XL	675	7 M	$\mathbf{8 . 6}$
DiT-XL $_{\text {(cfg=1.5) }}$	675	7 M	2.27
SiT-XL $_{\text {(efg=1.5) }}$	675	7 M	$\mathbf{2 . 0 6}$

Systematic improvements to methods underlying, e.g. Sora (OpenAI, 2024)

Designing different couplings

One is free to construct a variety of couplings, following the rules!

For any coupling (x_{0}, x_{1}) and any conditioning set ξ, the joint must marginalize

$$
\int_{\mathbb{R}^{d}} \rho\left(x_{0}, x_{1} \mid \xi\right) d x_{1}=\rho_{0}\left(x_{0} \mid \xi\right), \quad \int_{\mathbb{R}^{d}} \rho\left(x_{0}, x_{1} \mid \xi\right) d x_{0}=\rho_{1}\left(x_{1} \mid \xi\right) .
$$

Recent example in literature: minibatch OT (Tong et al (2023), Pooladian et al 2023)

Rather than use an approximate algorithm for constructing such couplings, there are many that we have natural access to

Example: Data-dependent coupling

MSA, MG, NB, RR, EVE arXiv:2310.03725 (2023) MSA, NB, ML, EVE arXiv:2310.03695 (2023)

What if one x_{0} is coupled to another x_{1} ?

$$
\rho\left(x_{0}, x_{1}\right)=\rho_{1}\left(x_{1}\right) \rho_{0}\left(x_{0} \mid x_{1}\right)
$$

In-painting

x_{0} a masked image
$b(t, x)$ invariant in unmasked areas

ient and better performance across tasks

Designing different new types of maps

Use interpolant blueprint to learn coefficients of new types of generative models

Example: are there processes that allow me to predict ensembles of future
events given just one condition?
Weather
Dynamical systems

What specific processes can we construct to meet these goals?

Parameterizing the Föllmer process

Interpolant

$$
\begin{gathered}
x(t)=\alpha(t) x_{0}+\beta(t) x_{1}+\sigma(t) \sqrt{t} z \\
\left(x_{0}, x_{1}\right) \sim \rho\left(x_{0}, x_{1}\right), \quad z \sim \mathrm{~N}\left(0, I_{d}\right) \text { with } z \perp\left(x_{0}, x_{1}\right)
\end{gathered}
$$

Reference Dynamics

$$
r(t)=\dot{\alpha}(t) x_{0}+\dot{\beta}(t) x_{1}+\dot{\sigma}(t) \sqrt{t} z
$$

Learning $b\left(t, x, x_{0}\right)=\mathbb{E}\left[r(t) \mid x(t)=x, x_{0}\right]$ solves the SDE

$$
d X_{t}=b\left(t, X_{t}, x_{0}\right) d t+\sigma(t) d W_{t}
$$

such that:

$$
\operatorname{Law}\left(X_{s}\right)=\operatorname{Law}\left(x_{t} \mid x_{0}\right), \text { with } X_{s=1} \sim \rho_{c}\left(x_{1} \mid x_{0}\right)
$$

Example: Probabilistic forecasting

YC, MG, MH, MSA, NB, EVE arXiv:2402.XXXXX (2024)

Interpolants for ensembles of future events

$$
\rho\left(x_{0}, x_{1}\right)=\rho_{0}\left(x_{0}\right) \rho_{1}\left(x_{1} \mid x_{0}\right)
$$

Navier Stokes

Evolution of the vorticity ω
Map ω_{t} to distribution $\rho\left(\omega_{t+\tau} \mid \omega_{t}\right)$
Choose NS w/ random forcing that has invariant measure

Video completion

Map x_{t} to distribution $\rho\left(x_{t+1} \mid x_{t-\tau: t}\right)$
Roll out subsequent frames

34
4

Multimarginal Interpolants

The learning paradigm behind interpolants (and diffusions!) can be independent of interpolation schedule (e.g. noise schedule)

Generic 2-marginal interpolant, with interpolation coordinates $\alpha=\left[\alpha_{0}, \alpha_{1}\right]$

$$
x(t)=\alpha_{0}(t) x_{0}+\alpha_{1}(t) x_{1}
$$

gives velocity field

$$
\begin{gathered}
b(t, x)=\mathbb{E}[\dot{x}(t) \mid x(t)=x]=\dot{\alpha}_{0}(t) \mathbb{E}\left[x_{0} \mid x(t)=x\right]+\dot{\alpha}_{1}(t) \mathbb{E}\left[x_{1} \mid x(t)=x\right] \\
\quad \text { call } g_{0}(t, x)^{\text {call } g_{1}(t, x)^{\prime}}
\end{gathered}
$$

All you need to learn are conditional expectations, learned on an interval.
To use it in an ODE, you can choose a time parameterization after

ODE vs SDE, numerical experiments

What does this mean practically?

128 dimensional Gaussian Mixtures

Theory says

$$
\epsilon^{*}=\left(\frac{L_{b}[\hat{b}]-\min _{\hat{b}} L_{b}[\hat{b}]}{L_{s}[\hat{s}]-\min _{\hat{s}} L_{s}[\hat{s}]}\right)^{1 / 2}
$$

$\mathbf{K L}$ for learned \hat{b}, \hat{s} minimal around $\epsilon \approx 5.0$, then
increases
*SDE dominance not necessarily generalize to images

April 11, 2024

26

Multimàrginal Interpolants

The learning paradigm behind interpolants (and diffusions!) can be independent of interpolation schedule (e.g. noise schedule)

Generic 2-marginal interpolant, with interpolation coordinates $\alpha=\left[\alpha_{0}, \alpha_{1}\right]$

$$
x(t)=\alpha_{0}(t) x_{0}+\alpha_{1}(t) x_{1}
$$

gives velocity field

$$
\begin{gathered}
b(t, x)=\mathbb{E}[\dot{x}(t) \mid x(t)=x]=\dot{\alpha}_{0}(t) \mathbb{E}\left[x_{0} \mid x(t)=x\right]+\dot{\alpha}_{1}(t) \mathbb{E}\left[x_{1} \mid x(t)=x\right] \\
\quad \text { call } g_{0}(t, x)^{\prime} \quad \text { call } g_{1}(t, x)^{\prime}
\end{gathered}
$$

All you need to learn are conditional expectations, learned on an interval.
To use it in an ODE, you can choose a time parameterization after

Multimarginal Interpolant

MSA, Boffi, Lindsey, Vanden-Eijnden, arXiv:2310.03695 (2023)

But also note!

Nothing is stopping you from interpolating between more densities

$$
x(\alpha)=\sum_{k=0}^{K} \alpha_{k} x_{k}
$$

The minimal conditions are

$$
\sum_{k} \alpha_{k}^{2}>0, \quad \sum_{k} \alpha_{k}^{2}<C^{2}
$$

α a coordinate vector on the surface of, or within an K-sphere of radius C

α a coordinate vector on the $K-$ simplex

Multimarginal Interpolants

The learning paradigm behind interpolants (and diffusions!) can be independent of interpolation schedule (e.g. noise schedule)

Generic 2-marginal interpolant, with interpolation coordinates $\alpha=\left[\alpha_{0}, \alpha_{1}\right]$

$$
x(t)=\alpha_{0}(t) x_{0}+\alpha_{1}(t) x_{1}
$$

gives velocity field

$$
\begin{gathered}
b(t, x)=\mathbb{E}[\dot{x}(t) \mid x(t)=x]=\dot{\alpha}_{0}(t) \mathbb{E}\left[x_{0} \mid x(t)=x\right]+\dot{\alpha}_{1}(t) \mathbb{E}\left[x_{1} \mid x(t)=x\right] \\
\quad \text { call } g_{0}(t, x)^{\prime} \quad \text { call } g_{1}(t, x)^{\prime}
\end{gathered}
$$

All you need to learn are conditional expectations, learned on an interval.
To use it in an ODE, you can choose a time parameterization after

Multimarginal Interpolant

MSA, Boffi, Lindsey, Vanden-Eijnden, arXiv:2310.03695 (2023)

But also note!

Nothing is stopping you from interpolating between more densities

$$
x(\alpha)=\sum_{k=0}^{K} \alpha_{k} x_{k}
$$

The minimal conditions are

$$
\sum_{k} \alpha_{k}^{2}>0, \quad \sum_{k} \alpha_{k}^{2}<C^{2}
$$

α a coordinate vector on the surface of, or within an K-sphere of radius C

α a coordinate vector on the $K-$ simplex

Multimarginal Interpolant

Definition

The barycentric interpolant $x(\alpha)$ with $\alpha=\left(\alpha_{0}, \ldots, \alpha_{K}\right) \in \Delta^{K}$ is the stochastic process

$$
x(\alpha)=\sum_{k=0}^{K} \alpha_{k} x_{k}
$$

where $\left(x_{1}, \ldots, x_{K}\right)$ are drawn from $\rho\left(x_{1}, \ldots, x_{K}\right)$ and we set $x_{0} \sim N\left(0, I d_{d}\right)$ drawn independently (x_{0} needed if you want score function).

Generalized continuity equation

The probability distribution of $x(\alpha)$ has a density $\rho(\alpha, x)$ which satisfies $K+1$ continuity equations

$$
\partial \alpha_{k} \rho(\alpha) \nabla_{x} \cdot\left(g_{k}(\alpha, x) \rho(\alpha)\right)=0
$$

where $g_{k}(\alpha, x)$ is the conditional expectation $\mathbb{E}\left[x_{k} \mid x(\alpha)=x\right]$

Multimarginal Interpolant

Once you have learned the g_{k}, you can any path on the simplex as a generative model from any ρ_{i} to any ρ_{j}

- Just choose a parameterization of $\alpha(t)$ for $t \in[0,1]$ that starts and ends at one of the marginal densities, e.g.

$$
\alpha(\dot{t}=0)=[1,0, \ldots, 0] \text { and } \alpha(t=1)=[0, \ldots, 1, \ldots, 0]
$$

Velocity field

$$
b(t, x)=\sum_{k=0}^{K} \dot{\alpha}_{k}(t) g_{k}(\alpha(t), x)
$$

Probability flow ODE

$$
\dot{X}_{t}=b\left(t, X_{t}\right)
$$

A geometric algorithm for selecting a performant α

Much effort has gone into choosing an appropriate noise schedule for diffusions. The multimarginal picture gives a straightforward algorithm

$$
C_{\alpha}(\hat{\alpha})=\min _{\hat{\alpha}} \int_{0}^{1} \mathbb{E}\left[\left|\sum_{k=0}^{K} \hat{\alpha}_{k}(t) g_{k}(\hat{\alpha}(t), x(\hat{\alpha}(t)))\right|^{2}\right] d t
$$

Riemannian geometric "path length" depends on $\alpha(t)$

- reduce transport cost over restriçted class to learn better $b(t, x)$.
- Extremely simple optimization of $\hat{\alpha}$

April 11, 2024

Applications, different paths on simplex

6 classes of MNIST digits as marginals

Generate from same initial condition to anywhere on 6-simplex

Sample from the empirical barycenter

More natural style-transfer by learning on whole simplex

More Applications

Simultaneous access to marginal sampling

Natural style transfer

Part 1 summary

Laying out some tools to work with dynamical measure transport and generative modeling

Approaching some of these topics from an applied maths perspective can give some better control on performance and methods

