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Abstract: In this talk, we will outline an efficient algorithm for port-based teleportation, a unitarily equivariant version of teleportation useful for
constructing programmable quantum processors and performing instantaneous nonlocal computation (NLQC). The latter connection is important in
AdS/CFT, where bulk computations are realized as boundary NLQC. Our algorithm yields an exponential improvement to the known relationship
between the amount of entanglement available and the complexity of the nonlocal part of any unitary that can be implemented usin NLQC.
Similarly, our algorithm provides the first nontrivial efficient algorithm for an approximate universal programmable quantum processor.

The key to our approach is a general quantum algorithm we develop for block diagonalizing so-called generalized induced representations, a novel
type of representation that arises from lifting a representation of a subgroup to one for the whole group while relaxing a linear independence
condition from the standard definition. Generalized induced representations appear naturally in quantum information, notably in generalizations of
Schur-Weyl duality. For the case of port-based teleportation, we apply this framework to develop an efficient twisted Schur transform for
transforming to a subgroup-reduced irrep basis of the partially transposed permutation algebra, whose dual is the U?n-k ? (U*) 2k representation of
the unitary group.
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Port-based teleportation (PBT)
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Port-based teleportation (PBT)

Protocol:
L g L 1. Alice performs a joint POVM{II, ;:11 on the
Z G 2 system and her ports and receives outcome [
X j 2. Alice sendsito Bob
' ' WVS 3. Bob throws away all of his ports except i, which
¢ Qv g

now holds the approximately teleported state
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Why is PBT interesting?

* Why use so much entanglement to achieve only approximate
teleportation?

» PBT achieves unitary equivariance

Bob can perform a unitary operation U on the teleported state
before or after he learns which port it ends up on

= T
& —n—
A A
7 9
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PBT and non-local quantum computation

* The unitary equivariance of PBT makes it a key subroutine for
NLQC

» NLQC: spacelike-separated Alice and Bob perform a joint J{\
unitary on their quantum systems using local unitaries and a D
single round of communication z/

» [May 19, "21]: in AdS/CFT, local quantum computations in the
bulk correspond to NLQCs on the boundary /_]/

|
kY \

> [May '22] bounds the entanglement consumed in an NLQC
protocol above and below by the complexity of the unitary
accomplished
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PBT and non-local quantum computation

* The unitary equivariance of PBT makes it a key subroutine for
NLQC

» NLQC: spacelike-separated Alice and Bob perform a joint J{\
unitary on their quantum systems using local unitaries and a D
single round of communication z/

> [May 19, ‘21]: in AdS/CFT, local quantum computations in the
bulk correspond to NLQCs on the boundary /_]/

|
kY \

> [May ‘22] bounds the entanglement consumed in an NLQC
protocol above and below by the complexity of the unitary
accomplished

> Efficient PBT improves the gap from triply to doubly exponential
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Symmetries of the PGM

If n—1
{Hi = p—1/2pip—1/2 + A}?=_11 o= |¢+)(¢+ lin X gn—2 p = Zpl
i=1
1)l = ~ = S
=% d L n \
/\ | |+ ,VIL L\/V\
N &
U UDIb), 1, W@ Uy = Ly =t g
" f_\/m‘r /\
i
| "

—> p and p; have a partially conjugated unitary symmetry
[pi’ U®n_1 X U*] = Oa [pa U®n—1 X U*] =0
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Symmetries of the PGM =0

Background
& ~ n—1 Standard Dynamic

= (I, =p~2pp~ 24 Ayl pi= 0P 1, ® d,f_z p=2.p
!=1 olor Fill
:

= ,=LL/'\ :_1_;\ h__\j(.‘ﬂtm
_ 420 = d/\\/\ [t ]

= p, p, are elements of the algebra of partially transposed
permutation operators A(d) = span.{V[o]": 0 €S,}

Actually, this statement is equivalent to the partially conjugated unitary

symmetry!

Edit Slide Layout
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Symmetries of the PGM

: n—1

(I =ppp™ P+ Ay 2= 160041, @ 5 p=2r

L

|¢+><¢+|m=di>< - L w (6]

—> p, p; are elements of the algebra of partially transposed
permutation operators A(d) = spanC{V[o]’n :0€S,}

Actually, this statement is equivalent to the partially conjugated unitary
symmetry!
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Standard Schur-Weyl duality

> The algebra of permutation operators CV[S(n)] and the algebra C[U(d)®"]
Vo) i) ®...Q i) = liziq) @ ... ® |igigm) Uiy ®...0i)=Uli)®...Ul|i)

are each other’s commutants in (Cd)®”

> As a consequence, the Hilbert space enjoys a multiplicity-free
decomposition into irreps of S(n) and U(d)

cH®= P e

AFn, h(A)<d
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Twisted Schur-Weyl duality

» The algebra of partially transported permutation operators A,i”(d) and the
algebra C[U(d)®"! ® U(d)*] are each other's commutants in (C%)®"

> As a result, the Hilbert space enjoys an analogous multiplicity-free
decomposition into irreps of A’(d) and U(d)

(C4)®n ( P .9 @g) @ Xy

aln-2, h(a)<d ’\
irreps of A"(d)
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Irreps of A'(d)

» Elements of Aff(d) that permute and transpose the last qudit are only
represented nontrivially on

o computational basis state
span.{ |i)g:| )i : kK € [1, n), i € [1, d"72)}

= span{VI(k n— DI|i) | ¢, )1, : ks 1}
> The irreps are labeledbya n — 2

¥, =spanc{Vitk n—1Dl|a,r, k)" %1 by) : k € [L,n), k, € [1,d,])

%L‘“—
transversal of S(n — 1)/S(n — 2) '\—/— irrep basis of S(n — 2)
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Irreps of A'(d)

» Elements of Aff(d) that permute and transpose the last qudit are only
represented nontrivially on

o computational basis state
span.{ |i)g:| )i : kK € [1, n), i € [1, d"7?)}

= span{VI(k n— DI|i) | ¢, )p1, : ks 1}
> The irreps are labeledbya n — 2

¥, =spanc{Vitk n—1Dl|a,r, k)" %1 by) < k € [L,n), k, € [1,d,])

%L‘“—
transversal of S(n — 1)/S(n — 2) '\—/— irrep basis of S(n — 2)
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Generalized induced rep

Suppose we have > arep (p, U) of the group G that we call the parent rep
» asubgroup H C G
» the restriction (p |H, V) C (p, U) that we call the base rep

When actingbyh € H, p,:V—>V
byge G p,:V->U

—> we can define a new, interesting representation of G

V12 G =spanc{p,(v): g € G,v €V}

Big idea: we want to lift the base rep to a rep of G; the parent rep dictates
how G acts on the base rep
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Generalized induced rep

> parentrep: (p, U) of G

PG = :
> baserep: (p|,,V) C (p,U)of HC G V12 G =span.{p,(v): g € G,v €V}

Note, for generic g € G, g = 7h for some transversalt € G/H, h€ H

= p,(v) = p(pp(v)) = p(v)  wherev,y' €V

Rewriting as a sum of subspaces, V12,G= 2 p.(V)
1€G/H

When this sum is direct, we have a true induced rep!
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Example (regular representation)

Parent rep: left regular representation of a group G (p, U = CG)

Base rep: for a subgroup H C G, choose anirrep VC CH

What is the action of G on V? vEV= Y gh = p) =) crh€C@H)
heH heH

Fort # 7/, p(V) C C(zH) and p_ C C(7'"H) will be disjoint in CG!

= V1,G= ), p.V)= @ rV)

t€G/H t€G/H
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Example (three qubits)

Parent rep: Hilbert space of three qubits U 2 (C)®3
G = S(3) acts by permuting the qubits

Base rep: H = S(2) permutes the first two qubits, V is the sign rep
V = span.{v =1010) — [100)}

p.v) = 1010) - | 100)
Pax®) = [001) — [ 100)

Paz(v) = 1010) —|001) is 2d instead of 3d!
= Pa3) = Pe — P3)

= V1 G=pV +p03V +pazV

The action of the transversals on the third qubit can’t be fully captured!
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Example (irreps of A" (d))

Parent rep: Hilbert space of n qudits U = (C%)®”
G = S(n — 1) acts by permuting the first n — 1 qudits

Base rep: H = S(n — 2) permutes the first n — 2 qubits, V, = P, Q | ¢, )

V, = span{|a,rk)"*|¢,) : k, € [1,d,]}

The generalized induced rep is then

Vo Yoneny St = 1) = span (Vitk n = Dl|a, 1, k)" *|¢,) : k € [Lin), k, € [Ld,]}
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Recap so far

» We want to find an efficient algorithm for PBT with the PGM

) ) ) . n—1
{Hi =p 1/2pip 12 4 A}?=11 p; = |¢+>(¢+|m (1%4) dnl—z p = Zpi
i=1

> The PBT operator p and states p, are elements of A"(d)

> The irreps of Afl"(d) where p, p, are represented nontrivially are
generalized induced reps

H o=V, 1, S—1)
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Algorithmic strategy

Because each #  is also a rep of S(n — 1), it can be reduced into irreps of

S(n—-1)
.= P <,
p=a+[], h(w)<d
this is a multiplicity-free decomposition!
= operators with an S(n — 1) symmetry, like p are diagonal in this basis

Strategy:
1. transform to an irrep basis of A’(d)

2. further decompose each generalized induced rep # , into irreps of S(n — 1)

i.e. perform a subgroup-reduced twisted Schur transform!
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Efficient port-based teleportation

> Performing the twisted Schur transform diagonalizes p and simplifies p,,

making it possible to perform PBT in poly(n, d) time

* Independent work: [Ngyuen 23] (efficient mixed Schur transform)
[Grinko, Burchardt, Ozols 23] (efficient PBT)

» Our perspective: performing the twisted Schur transform from the A:f(d)

side of the duality is a special case of the general problem of block-
diagonalizing generalized induced representations
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Generalized induced reps
are homomorphic images of induced reps!

Linear representation of a group: (p: G - GL(U),U) g-u = p,(u)

Module (representation) homomorphism
linearmap ¢ : V— W suchthat vbw = g.vb g.w

Y ¢

fer 6 md V / kerg = im¢g

eg. ¢: @r. VoV G= pr(v) Vp ¢ surjective homomorphism!

T.vep(v) = g(r.v) =(817) .V pg (V) = pg (p(V)
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A general procedure for
reducing homomorphic reps into irreps

¢:V—> W=im ¢, basis element v, = w,

1. Once we have an irrep-decomposing basis transformation matrix X for V

X B
vi= ) X suchthat V= EHEP . and Xd(g)Xx~' = @nn# R w(g)
J ' Iz

uoi=l1
Idea is qb(g*”i) would either = & or =0 because kerg |, = 0 or 9’;
1

This means {w; = ¢(v;) } would be irrep-decomposing spanning vectors of W
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A general procedure for
reducing homomorphic reps into irreps

2. But (b(@;") # 0 and qb(g’{t) # 0 may be linearly dependent

(ie. W é @ Z 9";)

Sodo Gaussian ehmmatlon
3:’

ﬂ\"

We have W 2 @ 9”
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A general procedure for
reducing homomorphic reps into irreps

3. Quantum subroutine - orthonormal irrep-decomposing basis of W?
Achievable if measured by a G-invariant inner product ( , )y

Block-diagonalize into unitary matrix irreps y* as ®'(g) = @ 1, ® yH(g)
H
track the Gram matrix Q;; = (w;, w;) = Q;; = (w;, w)) will find that

[@'(g) Q' ®(8) 1]y = Z (@) (Wi ww P&

homomorphism G- mvarlant

yt unltar , , }
’ch(g 1)w Zcb(g D W = a4 P oW = O

andso 0'=Pe¢* @1,

K
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A general procedure for
reducing homomorphic reps into irreps

Recap : Measure orthogonality using a G-invariant inner product ( , )y

1. Find an X to irrep-decompose the group action in {v;} as
X(I)(g)X_1 = [Inﬂ & yw*(g) with y* unitary  for preimage

2. Orthonormalize the irrep-decomposing {w;} in W by diagonalizing

the Gram matrix Q' = @q” & lld# forimage
)7
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Block-diagonalizing generalized induced reps
Step 1: block-diagonalize a true induced rep (preimage)

> We explicitly derived a basis transformation matrix that block-diagonalizes
an arbitrary induced rep @r. V,fromanirrep V, of H < G (base case)

T
X —_ [UQFT,G(I]A ® UéFT,H)]
|'>A|a919')B
Ugrr ¢ subgroup-reduced down G D H, i.e. obtained irreps
of G are block-diagonalized when restricting to H

> Proof idea: Frobonius reciprocity
Hom(V,,Res%E,) — HomS%(Ind%V . E,)
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Block-diagonalizing generalized induced reps
Step 2: multiplicity separation (image)

_ Diagonalize Q' = @q” ® I]dﬂ — Q" = [ to orthonormalize {w;}
7
> In general inefficient

> Cases that exponentially speedup the procedure:

the original {w;} orthonormal; degenerate eigenvalues in g*;
an orthogonal compositional structure:

V120G = (V1 H) Y Hyth 1 G

p—1
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Running examples of the algorithm
1. Schur transform [Harrow ‘05]

CcH® = @ Yo, ...n

Zini=n
where Y(n,, ..., ny) is spanned by standard basis elements with #n; | i)
Y(ny,...,ny) =Cv 1% S

Snlx...xSnd n

where v = | 1)®™]2)®"™... | d)®" s a trivial rep of S, X -+ X S,

> Complexity:
> X, omitted because {p (v)} orthonormal
> Ugrr,s, subgroup-reduced down §, O §, X --- X §, = inefficient X
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Running examples of the algorithm
2.% , for (k-)port-based teleportation

— P
%a — Vak -2k TSn—Zk Sn—k

> Complexity:
» g* all have degenerate eigenvalues

— X, involves an amplitude amplification for each u
» Ugrrs _, reduced down the standard tower S, _; O S,

—> X efficient
» For k = 1, X, incorporated efficiently into the whole circuit for PBT
—> efficient circuit for PBT!!!
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Generalized induced reps in diagram algebras
Commutants in (C%)®"

Commutant Algebra Diagrams (Generalized) induced reps

cluen) n(©Ss) ATA Ym....ng)

e/
C[U@P & U*@Q‘] P2(Bg,q) X{—)_\. ( PO&]_ & Z/?i\ ®Pa2 TS 3><53 XSy %S

C[o(C)®"] p3(B) M Pa® P <1 «s S
C[Sp(C)®"]  pa(B; %) W Rl ® % e ot e nioh

Sp X Sq

qg—3
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Results in our papers (arXiv 2310.01637 & ...)

> Give a poly(n, d) quantum algorithm for port-based teleportation
Motivated by this problem, we (from general to specific)...

> Create a procedure of block-diagonalizing homomorphic images of
representations

* Give a general quantum algorithm for block-diagonalizing generalized
induced representations

* Pedagogical intro to diagram algebras and show that their irreps are
generalized induced representations
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Results in our papers (arXiv 2310.01637 & ...)

> Give a poly(n, d) quantum algorithm for port-based teleportation
Motivated by this problem, we (from general to specific)...

> Create a procedure of block-diagonalizing homomorphic images of
representations

* Give a general quantum algorithm for block-diagonalizing generalized
induced representations

* Pedagogical intro to diagram algebras and show that their irreps are
generalized induced representations

> Applications of our general algorithm in diagram algebras: Schur transform,
twisted Schur transform
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Discussions

* Bridging the two sides of the (twisted) Schur transforms to give alternative
algorithms for block-diagonalizing (generalized) induced representations

> Making non-orthogonality / non-unitarity useful in guantum computing?

> Indication of irrep / spectral distributions of generalized induced reps?
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