Gauge theories + Symplectic Reduction

Example

Particle moving on a circle

\[\int (a \cdot \phi)^2 \]

\[\phi \sim \phi + 1 \]
Gauge theories + Symplectic Reduction

Example

Particle moving on a circle

\[\int (2 \pi \theta)^2 \]

\[\phi \sim \phi + 1 \]
Gauge rotational symmetry of circle

Rotation sends $\varphi \rightarrow \varphi + c$

Covariant derivative is

$$D_t \varphi = \partial_t \varphi + A_t$$

Action is

$$\int (D_t \varphi)^2 = \int (\partial_t \varphi)^2 + 2\partial_t \varphi A_t + A_t^2$$
Phase Space

Solutions to EOM mod gauge

Vary ϕ:

$D_{+}\phi = 0$

This gives usual phase space coordinates $q = \phi$

$p = D_{+}\phi$
Note: Action can be written in 1st order form

\[\int \frac{1}{2} p^2 + (\rho \partial \xi + \rho A_\xi) \]

Integrating out \(p \) \(\implies (\partial \xi + A_\xi)^2 \)
The function (in this case p) that couples to A_t is called the "moment map.

If we vary A_t:

2nd order form: $D_t \psi = 0$

1st order: $p = 0$
Infinitesimally, gauge symmetry transforms:

\[\delta A_t = \partial_t X \]
\[\delta \varphi = X \]

Set \(A_t = 0 \) by gauge transform
\textbf{Conclude}

Phase space = A point
Constant gmax \(tr. \)
set \(q = \varphi \to 0 \).

Conclude

Phase space = A point
M is a symplectic manifold
\[\mu \text{ is a function on } M \]
\[X_\mu = \{ \mu \text{, corresponding vector field} \} \]
Suppose flows of X_μ are periodic period 1
\[\Rightarrow X^\mu \text{ gives a } U(1) \text{ action on } M. \]

Previous example

\[M = \mathbb{R} \times S^1 \]

\[\mu = p \]

\[X^\mu = \frac{2}{S^q} \]

implies to a \(U(1) \) gauge field \(A^\mu \).
In curvilinear coordinates, the Lagrangian is

\[\mathcal{L} = \int_{\mathbb{R}} p_i(t) \dot{q}_i(t) + \mu(p(t), q(t)) A_t \]

(for a particle moving in \(M \)).
Gauge trans. are
\[
\begin{align*}
S\rho &= \frac{1}{2} \mu^\alpha p_\alpha \not x \\
S\phi &= \frac{1}{2} \mu^\alpha \phi_\alpha \not x \\
S\mathcal{A} &= \not D \not x
\end{align*}
\]

Phase Space
\begin{itemize}
\item p, q covariant constant
\item determined by $p(0), q(0)$
\end{itemize}

Vary A_μ, $\mu = 0$

Phase space = Quotient of $\{\mu = 0\}$ by $U(1)$ action generated by x_μ
Locally, we can find co-ords so

\[\mu = p_1 \]

\[X_\mu = \frac{2}{\partial q_1} \]

\[q_1 \sim q_1 + 1 \]

In these co-ords, we remove \(p_1, q_1 \)

\[p = 0 \]

\[q \]

\[\rightarrow p \]
Result is again symplectic.
This procedure is called symplectic reduction.
Example

Phase space of YM on $R \times S^1$

Action is

$$\int (\partial_t A_\theta - \partial_\theta A_t)^2$$
In 1st order form this is

\[\int B(\partial_t A_\theta - \partial_\theta A_\tau) + B^2 \]

\[B \text{ is a scalar.} \]
Equations of motion:

\[
\text{Looks like } \int p(\theta) q(\theta) + p(\theta)^2 + \frac{d}{dt} p(\theta) A_{\theta} \text{ moment ineq}
\]
Vary A_0: $\partial_\nu B = 0$

Vary B: $\partial_\nu \Delta_0 A_0 - 2\partial_\nu A_0 + 2B = 0$

Vary A_t: moment map equation

$\partial_\nu B = 0$

Gauge transformations set $A_t = 0$, leaving us with $X(0)$ only depend on θ.
Conclude

Phase space is the symplectic reduction of phase space for a 2d free scalar $p(\theta), q(\theta)$
where we reduce by the action of gauge transforms $X(\theta)$ and moment map $\theta \in \mathfrak{p}(\theta)$.

This acts by

$$\delta q(\theta) = \partial_{\theta} X(\theta)$$

$$\delta \rho(\theta) = 0.$$
\(p(\theta) = \text{constant, say } p \)

\(q(\theta) \) is gauge equivalent to \(\int q(\theta) d\theta \)

Phase space is 2 dim, coords
\(p = p(\theta) \) and \(\int q(\theta) d\theta \)
Treated more carefully,

$$2\pi i \int_0^1 d\theta$$

is gauge invariant, phase space

is $$\mathbb{R} \times S^1$$

Hamiltonian = $$\hat{p}$$.