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Some ideas from the course so far...

* Machine learning (ML)

* Supervised learning/unsupervised learning
* Ising model

* Many-body physics

* Phases of matter
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What is guantum machine learning?
Definition
* 1. Classical machine learning (ML) that uses quantum data

E.g., using classical ML to learn when a phase transition occurs in a
quantum system

2. Machine learning done on a quantum computer instead of a regular
classical computer.

irsa: 24040054 Page 4/61



High-level summary of one type of ML
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Typically, QML still involves a classical
computer

* Hybrid computation: quantum computer + classical computer

Quantum Hardware
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Why study QML?

* 1. Widely believed that, for some problems, QML is “better” than ML
(better = faster or better asymptotic scaling)

2. QML has applications in many areas of physics—not just in quantum
information

E.g., cosmologists are using QML to model the quantum fields that are
important to the evolution of the universe!

QML = useful too%ﬁ
@
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Why study QML?

* 3. Exciting & rapidly growing field

-it’s just getting started—many opportunities for young researchers to
contribute & advance the field

(especially if you're physicist with good coding skills or a strong interest
in coding and/or data science)
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Why study QML?

Google, GESDA and XPRIZE launch new
competition in Quantum Applications

Mar 04, 2024 XPRIZE Quantum Applications is a 3-year, $5M global competition designed to generate quantum computing

3minread (QC) algorithms that can be put into practice to help solve real-world challenges.
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An Invitation

* Qutline: Two popular QML algorithms

1. Variational quantum eigensolver
2. QAOA
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Caution!

* Not known how much better QML is than standard ML.

* A lot can be done using (classical) high-performance computers +
sophisticated classical algorithmes.

* Often, it’s not obvious what the best that regular ML can achieve is.

Pirsa: 24040054 Page 11/61



Example of a QML algorithm
Variational quantum eigensolver (VQE)

* We have a quantum system
* Would like to know its ground state.
* In many cases, it’s hard to calculate.

* Calculating ground state is first step in calculating electronic

properties of the system (e.g., conductivity, chemical reaction
pathways)

irsa: 24040054 Page 12/61



Steps in VQE

1. Parameterize all the quantum states of the system
* 2. Take an educated guess at the ground state (ansatz)

* 3. Calculate the energy of your initial guess for the ground state.
(QUANTUM COMPUTER)

* 4, Calculate a better guess (CLASSICAL COMPUTER/OPTIMIZER)
* 5. Calculate the energy of your new state.
* 6. Repeat steps 4. and 5. until the energy stops changing.
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Classically, a bar magnet evolves to line up
with the field, just like a compass needle.

suspend it from a string‘l:-:‘

so that'it can rotat
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Quantum case

* Consider a spin-1/2 particle in a (classical) magnetic field that’s
parallel to the z axis.

0 0
‘1/) > = COS (E) T> +sin (5) | 1>
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Problem: Which state minimizes < H >, the expectation value of H,
the energy (or Hamiltonian) of the particle?

where Z = [(1) _01] =0, (Pauli Z operator)

Pirsa: 24040054 Page 16/61



Answer

Y >=]1>

@
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We can also find this answer using VQE

1. Parameterize the quantum states of the system

= 8T+'6Jl
1,b>—c052 > 51n2|>

(We've simplified by setting the azimuthal angle ¢ = 0, where Iw > = cos @)' T> +sin (g) e'?] 1>)

2. Take an educated guess at the ground state (ansatz)

* let'stry 0 =m/2

- cs(Eesn(3)-

2 o o -
* This gives |1,b>—ﬁ(T> + | 1>) =y >
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* 3. Calculate the energy of your initial guess for the ground state.
(QUANTUM COMPUTER)

Prepare the spin-1/2 particle (qubit) in = |y, >

Map spin-1/2 particle to a qubit
0>=|T>
11>=|1>
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How do we prepare the initial state?

Typically, qubits are prepared to initially be in the state |y > =10 > =
| T>

Rotate the particle about the y-axis by the angle 6:

| 6 . 6
cosS— —Sinc
2 2

ﬁY(Q) - 0 0
SlTLE COS —

2

Y >= Ry (0) |y > QUANTUM GATE
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RECALLH = —BZ = —B6,

« As H o< Z, we can calculate <H> by measuring Z many times and
taking the average.
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* 4, Calculate a better guess (CLASSICAL COMPUTER/OPTIMIZER)

d<H>
do
* Then, calculating a new value for the parameter: 8’ = 0 — A

* One way of doing this is by calculating
d<H>
do

A = step size (or learning rate)

This is just gradient descent.
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* 5. Calculate the energy of the new state.
* prepare the new state: |’ >= Ry (0") |, >
* Measure Z many times and take the average.

—_— Ca

e<H>=-B< Z/Z >
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* 6. Repeat steps 4. and 5. until the energy stops changing.

VQE is performed on computers.

Python Libraries for QML
VWV PENNYLANE

& Qiskit

+ many others (Cirg, TKet, Amazon braket etc.)
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R e S u | tS Energy versus theta for VQE iterations
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* Obviously, using VQE is overkill for this simple problem.
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Applications: What’s the ground state of the
guantum Ising model?

* You saw the classical 1sing model in Lecture 6

* Let’s look at the quantum lIsing model

* Classical spins (up or down) = qubits

e See tutorial code for details
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R e S u | tS Energy versus theta for VQE iterations
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Ground states of molecules

* E.g., H, molecule. .

* Map orbitals to qubits.

* See tutorial code for details
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Ground states of molecules

* Useful in modeling complex chemical reactions in carbon capture!
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Many different ways to optimize!

* Gradient-based

* Momentum-based gradient descent
* Stochastic gradient descent

* Quantum Natural Gradient

* Gradient-free
e COBYLA

irsa: 24040054 Page 31/61



Intuition for why VQE might be useful/better

* For N qubits, the classical computing overhead seems to increase
exponentially.

* Resource scaling of VQE is polynomial
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Note that this is a variational algorithm

* Many QML algorithms are variational.
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Quantum Approximation Optimization
Algorithm = QAOA

* What problem does it solve?
* Let’s look at an example!

* Classical Ising model from Lecture 6

A S S SN SN SR S B

1 2 i : + 1 N

* Nspins

* Each spin is either up or down (2 classical states)
* h. = local magnetic field applied to it spin

* Nearest-neighbour interactions
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This is a combinatorial optimization problem
* z. = spin of i*" particle
e Minimize the function H(z) = =] X N1 2,241 + 2y hyz;

where z = {z,,2,,25...z,} and
J = nearest-neighbour interaction strength
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In principle, we could solve the problem via
adiabatic quantum computation

Map the classical energy H,.._.(z) to the energy of the qubits

Ising

H(Z) = _] Z iZi+1 + E =1 h; iZi H(Z) 2 Hlsmg _] i\l 11 ZAL A1+1 + Zé\;l hizhi
CLASSICAL QUANTUM
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Adiabatic guantum evolution

* adiabatic = very slow

* Start the N qubits in the ground state of a “simple” Hamiltonian H

* Slowly (i.e., adiabatically) change the Hamiltonian from Hg to Hyging
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* Quantum system stays in ground state

* We end up with the ground state of H;y, !

Initial Hamiltonian = final Hamiltonian

Pirsa: 24040054 Page 38/61



H(t) = (1 —t/T)Hs + t/T Hising, for0<t<T
T = total evolution time

This is theoretically possible, but hard to do in practice

QAOA approximates this ideal approach
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Let the simple Hamiltonian be Hg = Iivzlj?i

where X; = (1) (1)] = Gy,; (Pauli X operator for the it qubit)

We want to simulate the following time evolution:

U(t) =f (H(t)) ﬁ(t) - (1 _ t/T)ﬁS £ t/T ﬁ]sing

But, how?
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Let the simple Hamiltonian be ﬁs = ?Izl )?i

where X; = [(1) (1)] = Gx; (Pauli X operator for the /" qubit)

Start system in ground state of Hs:

N
. ®N 1 o

>=H 1>=— (=1)ii >
Y S ‘ \/E,;E:l )Y
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Use a constant Hamiltonian within each segment

¢(Hising) 1 c(Hising) +

]

cfty) =
ftpg)
cfts) |
cfts) |

c(t,) — ’
efty) —

= » t
ot

L
Within the mt" time segment, !

U (t,,) = expl(-i/h) (1 — t,,/T)Hs + t;n/THjsing) At]

This is of the form U = exp((/I + E)At)
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* exp((4 + B)At) # exp((4 )At) exp((B)At)
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It’s known that exp((4 + B)At) = [1,, [exp(A At/n) exp(B At/n)]"
forAt<<landn>>1
(Lie-Trotter formula)

So, we can approximate U (t.,) as follows:
1. Apply ﬁlsing for a time (t, /T) At/n

2. Apply Hs for atime [(1 — t,,,/T) At/n]

3. Repeat 1and 2 ntimes.
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* Repeat the entire procedure for each of the M intervals.

Form =1 to M:
1. Apply ﬁ;sing for a time (t,/T) At/n
2. Apply Hs for atime [(1 — t,,/T) At/n]
3. Repeat1and 2 ntimes.
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At the end, measure each qubit in the computational (i.e., Z) basis.

The bitstring of results represents a possible solution.
E.g., for N = 3, we might measure ‘0 1 0". This represents T 1" in the Ising model.

I
|1> < i - - d ‘

|1> 1H U(Hising) [ U(Hs) UlHuing) 7] U(Hs) /7<

Pirsa: 24040054 Page 46/61



Visualization

[1> --_H ] - - — as
|1> ol ’f J U(Hlsing) B U(HS) - U(Hlsil'lg) B U(HS)--
1> { # - T
! |
1 M
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Steps in QAOA

-~ ~ N .
1. Start in ground state of Hy : |¢ > = HS® 1L>= \%Zf:l(—l)ﬂi >

2.Forp=1toP:
a. Apply Iilsmg for a randomly chosen length of time

b. Apply Hg for a randomly chosen length of time
(Note: P =M n)

3. Measure each qubit in the computational (i.e., Z) basis.
4. Repeat Steps 1. to 3. a number of times. This produces a sample the distribution of

outcomes.
iia!i“

5. Calculate the value of H for each possible outcome & output the lowest
H (energy value) !E!
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6. Classically optimize all 2P time durations for H;s;,, and H.
(This is where the machine learning comes in.)

7. Repeat steps 1. to 6. until either:
a) the result stops changing or

b) we’re confident enough that we have a good enough approximation
to the ground state.
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Let’s look at a toy example

* Classical Ising model with two spins, N=2and h;=h, =0
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Probability distribution for ground state of H,

0.25 A

0.20 A1

Probability

0.10

0.05 A1

0.00 -
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Some results for M =1 (and n =1)

Probability distribution of outcomes for M=1 and 1 iterations of gradient descent optimization

04
0.3
=
=
o
S
a 02
0.1
0.0 - -
o1 10

Measurement outcome in computational basis

1 optimization
iteration
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o0 - T™M
11 244
Calculate H:
H(TT) =-(-1)(-1) = -1
H(W ) =-(+1)(+1) =-1

Ground state!
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Five optimization iterations

Probability distribution of outcomes for M=1 and 5 iterations of gradient descent optimization
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iterations
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M = 2 and 20 optimization iterations

Pirsa: 24040054

Probability distribution of outcomes for M=2 and 20 iterations of gradient descent optimization

0.5

0.4

o
w

Probability

o
(]

0.1

0.0

01 10
Measurement outcome in computational basis

Page 54/61



It’s known that exp((4 + B)At) = [1,, [exp(A At/n) exp(B At/n)]"
forAt<<landn>>1
(Lie-Trotter formula)

So, we can approximate U (t.,) as follows:
1. Apply ﬁlsing for a time (t, /T) At/n

2. Apply Hs for atime [(1 — t,,,/T) At/n]

3. Repeat 1and 2 ntimes.

Pirsa: 24040054 Page 55/61



Steps in QAOA

1> o

U(Hlsing) B U(HS)

H
11> 4 H

H

1>

U(Hising) [

U(H,)

Sample distribution

| of outputs

Value of lowest H

Atl, Atz' Ata es AtzM
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Many real-world problems can be
represented as COP problems

* Finance

* Logistics

* Chemistry

* Materials science

* Many-body physics

* QAOA has many applications within & outside of physics
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* Performance of QAOA versus the best classical algorithms?
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Lots of interest in VQE and QAOA

Part of the reason is that we can run them on quantum computers with
a relatively small number of quantum gates.

Shallow quantum circuits.
Doable on today’s (and near future) quantum computers. NISQ era
NISQ = noisy intermediate scale quantum computers
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Further references to continue your QML
journey

CODE USED IN THIS LECTURE TO GET THE RESULTS FOR VQE & QAOA: https://drive.google.com/drive/folders/1vVewu JxasUOuXOH V5bSMI-1gdvAAxm?usp=drive link

QML MOOC, Peter Wittek
https://www.youtube.com/playlist?list=PLmRxgFnClhaMgvot-Xuym_hn69Imzlokg
(41 Lectures!)

QAOA: A different perspective | PennylLane Tutorial

https://www.youtube.com/watch?v=cMZcA25QnYQ

An Introduction to Quantum Optimization Approximation Algorithm (University of Maryland)

https://www.cs.umd.edu/class/fall2018/cmsc657 /projects/group_16.pdf

Maria Schuld, I. Sinayskiy, F. Petruccione
An Introduction to Quantum Machine Learning
https://arxiv.org/abs/1409.3097
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Big questions in QML

* How much better are VQE and QAOA than the best possible classical
algorithms?

* What other QML algorithms exist?
* (thinking “quantumly”)

* What problems (that we’re interested in) can QML algorithms solve?
* Physics problems & real-world problems

irsa: 24040054 Page 61/61



