Title: Machine Learning Lecture

Speakers: Damian Pope

Collection: Machine Learning 2023/24

Date: April 30, 2024 - 11:30 AM

URL: https://pirsa.org/24040054

Pirsa: 24040054 Page 1/61

Introduction to Quantum Machine Learning

Damian Pope, PhD

Pirsa: 24040054 Page 2/61

Some ideas from the course so far...

- Machine learning (ML)
- Supervised learning/unsupervised learning
- Ising model
- Many-body physics
- Phases of matter

Pirsa: 24040054 Page 3/61

What is quantum machine learning? Definition

• 1. Classical machine learning (ML) that uses quantum data

E.g., using classical ML to learn when a phase transition occurs in a quantum system

2. Machine learning done on a quantum computer instead of a regular classical computer.

Pirsa: 24040054 Page 4/61

High-level summary of one type of ML

Pirsa: 24040054 Page 5/61

Typically, QML still involves a classical computer

• Hybrid computation: quantum computer + classical computer

Pirsa: 24040054 Page 6/61

Why study QML?

- 1. Widely believed that, for some problems, QML is "better" than ML (better = faster or better asymptotic scaling)
- 2. QML has applications in many areas of physics—**not** just in quantum information

E.g., **cosmologists** are using QML to model the quantum fields that are important to the evolution of the universe!

Pirsa: 24040054 Page 7/61

Why study QML?

- 3. Exciting & rapidly growing field
- -it's just getting started—many opportunities for young researchers to contribute & advance the field

(especially if you're physicist with good coding skills or a strong interest in coding and/or data science)

Pirsa: 24040054 Page 8/61

Why study QML?

• 4.

Google, GESDA and XPRIZE launch new competition in Quantum Applications

Mar 04, 2024 3 min read XPRIZE Quantum Applications is a 3-year, \$5M global competition designed to generate quantum computing (QC) algorithms that can be put into practice to help solve real-world challenges.

Pirsa: 24040054 Page 9/61

An invitation

- Outline: Two popular QML algorithms
 - 1. Variational quantum eigensolver
 - 2. QAOA

Pirsa: 24040054 Page 10/61

Caution!

- Not known how much better QML is than standard ML.
- A lot can be done using (classical) high-performance computers + sophisticated classical algorithms.
- Often, it's not obvious what the best that regular ML can achieve is.

Pirsa: 24040054 Page 11/61

Example of a QML algorithm Variational quantum eigensolver (VQE)

- We have a quantum system
- Would like to know its ground state.
- In many cases, it's hard to calculate.

 Calculating ground state is first step in calculating electronic properties of the system (e.g., conductivity, chemical reaction pathways)

Pirsa: 24040054 Page 12/61

Steps in VQE

- 1. Parameterize all the quantum states of the system
- 2. Take an educated guess at the ground state (ansatz)
- 3. Calculate the energy of your initial guess for the ground state. (QUANTUM COMPUTER)
- 4. Calculate a better guess (CLASSICAL COMPUTER/OPTIMIZER)
- 5. Calculate the energy of your new state.
- 6. Repeat steps 4. and 5. until the energy stops changing.

Pirsa: 24040054 Page 13/61

Classically, a bar magnet evolves to line up with the field, just like a compass needle.

Pirsa: 24040054 Page 14/61

Quantum case

• Consider a spin-1/2 particle in a (classical) magnetic field that's parallel to the z axis.

$$\left|\psi>=\cos\left(\frac{\theta}{2}\right)\right|\uparrow> +\sin\left(\frac{\theta}{2}\right)|\downarrow>$$

Pirsa: 24040054 Page 15/61

Problem: Which state minimizes $<\widehat{H}>$, the expectation value of \widehat{H} , the energy (or Hamiltonian) of the particle?

$$\widehat{H} = -B\widehat{Z} = -B\widehat{\sigma}_z$$

where
$$\hat{Z} = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} = \hat{\sigma}_z$$
 (Pauli Z operator)

Pirsa: 24040054

Answer

$$|\psi>\,=\,|\,\downarrow>$$

Pirsa: 24040054 Page 17/61

We can also find this answer using VQE

1. Parameterize the quantum states of the system

$$\left|\psi>=\cos\left(\frac{\theta}{2}\right)\right|\uparrow> +\sin\left(\frac{\theta}{2}\right)|\downarrow>$$

(We've simplified by setting the azimuthal angle ϕ = 0, where $\left|\psi>=\cos\left(\frac{\theta}{2}\right)\right|$ \(\tag{>} + \sin\left(\frac{\theta}{2}\right)e^{i\phi}\right| \(\psi>>\right)

2. Take an educated guess at the ground state (ansatz)

- Let's try $\theta = \pi/2$
- $\cos\left(\frac{\pi}{4}\right) = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}$
- This gives $|\psi\rangle = \frac{1}{\sqrt{2}}(\uparrow\rangle + |\downarrow\rangle) = |\psi_0\rangle$

• 3. Calculate the energy of your initial guess for the ground state.

(QUANTUM COMPUTER)

Prepare the spin-1/2 particle (qubit) in = $|\psi_0>$

Map spin-1/2 particle to a qubit

$$|0> \equiv |\uparrow>$$
$$|1> \equiv |\downarrow>$$

Pirsa: 24040054 Page 19/61

How do we prepare the initial state?

Typically, qubits are prepared to initially be in the state $|\psi_0>$ = |0> \equiv $|\uparrow>$

Rotate the particle about the y-axis by the angle θ :

$$\hat{R}_{Y}(\theta) = \begin{bmatrix} \cos\frac{\theta}{2} & -\sin\frac{\theta}{2} \\ \sin\frac{\theta}{2} & \cos\frac{\theta}{2} \end{bmatrix}$$

$$|\psi>=\hat{R}_{Y}(\theta)|\psi_{0}>$$
 QUANTUM GATE

Pirsa: 24040054

$$\operatorname{RECALL} \widehat{H} = -B\widehat{Z} = -B\widehat{\sigma}_{\!\scriptscriptstyle Z}$$

• As $\widehat{H} \propto \widehat{Z}$, we can calculate $<\widehat{H}>$ by measuring \widehat{Z} many times and taking the average.

Pirsa: 24040054 Page 21/61

4. Calculate a better guess (CLASSICAL COMPUTER/OPTIMIZER)

- One way of doing this is by calculating $\frac{d < \hat{H} >}{d\theta}$
- Then, calculating a new value for the parameter: $\theta' = \theta \Delta \frac{d < \widehat{H} >}{d\theta}$

 Δ = step size (or *learning rate*)

This is just **gradient descent**.

• 5. Calculate the energy of the new state.

• prepare the new state:
$$|\psi'>=\hat{R}_Y(\theta')|\psi_0>$$

• Measure Z many times and take the average.

•
$$<\widehat{H}> = -B < \widehat{Z}>$$

• 6. Repeat steps 4. and 5. until the energy stops changing.

VQE is performed on computers.

Python Libraries for QML

+ many others (Cirq, TKet, Amazon braket etc.)

Pirsa: 24040054 Page 24/61

Results

• Obviously, using VQE is overkill for this simple problem.

Pirsa: 24040054 Page 25/61

Results

• Obviously, using VQE is overkill for this simple problem.

Pirsa: 24040054 Page 26/61

Applications: What's the ground state of the **quantum** Ising model?

- You saw the *classica*l Ising model in Lecture 6
- Let's look at the quantum Ising model
- Classical spins (up or down) → qubits
- See tutorial code for details

Pirsa: 24040054 Page 27/61

Results

• Obviously, using VQE is overkill for this simple problem.

Pirsa: 24040054 Page 28/61

Ground states of molecules

• E.g., H₂ molecule.

See tutorial code for details

Pirsa: 24040054 Page 29/61

Ground states of molecules

• Useful in modeling complex chemical reactions in carbon capture!

Pirsa: 24040054 Page 30/61

Many different ways to optimize!

- Gradient-based
- Momentum-based gradient descent
- Stochastic gradient descent
- Quantum Natural Gradient
- Gradient-free
- COBYLA

Pirsa: 24040054 Page 31/61

Intuition for why VQE might be useful/better

• For N qubits, the classical computing overhead seems to increase exponentially.

Resource scaling of VQE is polynomial

Pirsa: 24040054 Page 32/61

Note that this is a <u>variational</u> algorithm

• Many QML algorithms are variational.

Pirsa: 24040054 Page 33/61

Quantum Approximation Optimization Algorithm = QAOA

- What problem does it solve?
- Let's look at an example!
- <u>Classical</u> Ising model from Lecture 6

- N spins
- Each spin is either up or down (2 classical states)
- h_i = local magnetic field applied to ith spin
- Nearest-neighbour interactions

Pirsa: 24040054

This is a combinatorial optimization problem

• z_i = spin of ith particle

• Minimize the function $H(\mathbf{z}) = -J \sum_{i=1}^{N-1} z_i z_{i+1} + \sum_{i=1}^{N} h_i z_i$

where $\mathbf{z} = \{z_1, z_2, z_3...z_n\}$ and

J = nearest-neighbour interaction strength

Pirsa: 24040054 Page 35/61

In principle, we could solve the problem via adiabatic quantum computation

Map the *classical* energy $H_{lsing}(\mathbf{z})$ to the energy of the qubits

$$H(\mathbf{z}) = -J \sum_{i=1}^{N-1} z_i z_{i+1} + \sum_{i=1}^{N} h_i z_i \ H(\mathbf{z}) \Rightarrow \widehat{H}_{Ising} = -J \sum_{i=1}^{N-1} \hat{z}_i \hat{z}_{i+1} + \sum_{i=1}^{N} h_i \hat{z}_i$$
 CLASSICAL QUANTUM

Pirsa: 24040054 Page 36/61

Adiabatic quantum evolution

- adiabatic = very slow
- Start the N qubits in the ground state of a "simple" Hamiltonian \widehat{H}_S
- **Slowly** (i.e., adiabatically) change the Hamiltonian from \widehat{H}_S to \widehat{H}_{Ising}

Pirsa: 24040054 Page 37/61

- Quantum system stays in ground state
- We end up with the ground state of \widehat{H}_{Ising} !

Pirsa: 24040054 Page 38/61

$$\widehat{H}(t) = (1 - t/T)\widehat{H}_S + t/T \ \widehat{H}_{Ising}$$
, for $0 \le t \le T$
T = total evolution time

This is theoretically possible, but hard to do in practice

QAOA approximates this ideal approach

Let the simple Hamiltonian be $\widehat{H}_S = \sum_{i=1}^N \widehat{X}_i$ where $X_i = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \widehat{\sigma}_{X,i}$ (Pauli X operator for the i^{th} qubit)

We want to simulate the following time evolution:

$$\widehat{U}(t) = f(\widehat{H}(t))$$
 $\widehat{H}(t) = (1 - t/T)\widehat{H}_S + t/T \widehat{H}_{Ising}$

But, how?

Let the simple Hamiltonian be $\widehat{H}_S = \sum_{i=1}^N \widehat{X}_i$ where $X_i = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \widehat{\sigma}_{X,i}$ (Pauli X operator for the i^{th} qubit)

Start system in ground state of \widehat{H}_S :

$$|\psi\rangle = \widehat{H}_S^{\otimes N} |1\rangle = \frac{1}{\sqrt{2}} \sum_{i=1}^{2^N} (-1)^i |i\rangle$$

Use a constant Hamiltonian within each segment

Within the m^{th} time segment,

$$\widehat{U}$$
 (t_m) = exp[(-i/ \hbar) ((1 - t_m/T) \widehat{H}_S + $t_m/T\widehat{H}_{Ising}$) Δ t]

This is of the form $\widehat{U} = \exp((\widehat{A} + \widehat{B})\Delta t)$

• $\exp((\hat{A} + \hat{B})\Delta t) \neq \exp((\hat{A})\Delta t) \exp((\hat{B})\Delta t)$

Pirsa: 24040054 Page 43/61

It's known that $\exp((\widehat{A} + \widehat{B})\Delta t) \approx \prod_n [\exp(\widehat{A} \Delta t/n) \exp(\widehat{B} \Delta t/n)]^n$ for $\Delta t << 1$ and n >> 1 (Lie-Trotter formula)

So, we can approximate \widehat{U} (t_m) as follows:

- 1. Apply \widehat{H}_{Ising} for a time (t_m/T) Δ t/n
- 2. Apply \widehat{H}_S for a time $[(1-t_m/T) \Delta t/n]$
- 3. Repeat 1 and 2 n times.

• Repeat the entire procedure for each of the M intervals.

For m = 1 to M:

- 1. Apply \widehat{H}_{Ising} for a time (t_m/T) Δ t/n
- 2. Apply \widehat{H}_S for a time $[(1 t_m/T) \Delta t/n]$
- 3. Repeat 1 and 2 *n* times.

Pirsa: 24040054 Page 45/61

At the end, measure each qubit in the computational (i.e., Z) basis.

The bitstring of results represents a possible solution.

E.g., for N = 3, we *might* measure '0 1 0'. This represents $\uparrow \downarrow \uparrow$ in the Ising model.

Pirsa: 24040054 Page 46/61

Visualization

Pirsa: 24040054 Page 47/61

Steps in QAOA

1. Start in ground state of
$$\widehat{H}_S:\left|\psi>=\widehat{H}_S^{\otimes N}\right|1>=\frac{1}{\sqrt{2}}\sum_{i=1}^{2^N}(-1)^i|i>$$

- 2. For p = 1 to P:
 - a. Apply \widehat{H}_{Ising} for a randomly chosen length of time
 - b. Apply \widehat{H}_S for a randomly chosen length of time (Note: P = M n)
- 3. Measure each qubit in the computational (i.e., Z) basis.
- 4. Repeat Steps 1. to 3. a number of times. This produces a sample the distribution of outcomes.
- 5. Calculate the value of ${\cal H}$ for each possible outcome & output the lowest H (energy value)

6. Classically optimize all 2P time durations for \widehat{H}_{Ising} and \widehat{H}_{S} . (This is where the machine learning comes in.)

- 7. Repeat steps 1. to 6. until either:
- a) the result stops changing or
- b) we're confident enough that we have a good enough approximation to the ground state.

Pirsa: 24040054 Page 49/61

Let's look at a toy example

• Classical Ising model with two spins, N = 2 and $h_1 = h_2 = 0$

Probability distribution for ground state of \hat{H}_s

Pirsa: 24040054 Page 51/61

Some results for M = 1 (and n = 1)

Probability distribution of outcomes for M=1 and 1 iterations of gradient descent optimization

1 optimization iteration

$$00 \rightarrow \uparrow \uparrow$$

$$11 \rightarrow \downarrow \downarrow$$

Calculate H:

$$H(\uparrow \uparrow) = -(-1)(-1) = -1$$

 $H(\downarrow \downarrow) = -(+1)(+1) = -1$

Ground state!

Pirsa: 24040054 Page 52/61

Five optimization iterations

Probability distribution of outcomes for M=1 and 5 iterations of gradient descent optimization

5 optimization iterations

Pirsa: 24040054 Page 53/61

M = 2 and 20 optimization iterations

Pirsa: 24040054 Page 54/61

It's known that $\exp((\widehat{A} + \widehat{B})\Delta t) \approx \prod_n [\exp(\widehat{A} \Delta t/n) \exp(\widehat{B} \Delta t/n)]^n$ for $\Delta t << 1$ and n >> 1 (Lie-Trotter formula)

So, we can approximate \widehat{U} (t_m) as follows:

- 1. Apply \widehat{H}_{Ising} for a time (t_m/T) Δ t/n
- 2. Apply \widehat{H}_S for a time $[(1-t_m/T) \Delta t/n]$
- 3. Repeat 1 and 2 n times.

Steps in QAOA

Pirsa: 24040054 Page 56/61

Many real-world problems can be represented as COP problems

- Finance
- Logistics
- Chemistry
- Materials science
- Many-body physics

QAOA has many applications within & outside of physics

Pirsa: 24040054 Page 57/61

• Performance of QAOA versus the best classical algorithms?

Pirsa: 24040054 Page 58/61

Lots of interest in VQE and QAOA

Part of the reason is that we can run them on quantum computers with a relatively small number of quantum gates.

Shallow quantum circuits.

Doable on today's (and near future) quantum computers. NISQ era

NISQ = noisy intermediate scale quantum computers

Pirsa: 24040054 Page 59/61

Further references to continue your QML journey

CODE USED IN THIS LECTURE TO GET THE RESULTS FOR VQE & QAOA: https://drive.google.com/drive/folders/1vVcwu JxasUOuXOH V5bSMI-1qdvAAxm?usp=drive link

QML MOOC, Peter Wittek

https://www.youtube.com/playlist?list=PLmRxgFnClhaMgvot-Xuym_hn69lmzlokg (41 Lectures!)

QAOA: A different perspective | PennyLane Tutorial

https://www.youtube.com/watch?v=cMZcA2SQnYQ

An Introduction to Quantum Optimization Approximation Algorithm (University of Maryland)

https://www.cs.umd.edu/class/fall2018/cmsc657/projects/group_16.pdf

Maria Schuld, I. Sinayskiy, F. Petruccione

An Introduction to Quantum Machine Learning

https://arxiv.org/abs/1409.3097

Pirsa: 24040054 Page 60/61

Big questions in QML

- How much better are VQE and QAOA than the best possible classical algorithms?
- What other QML algorithms exist?
- (thinking "quantumly")
- What problems (that we're interested in) can QML algorithms solve?
- Physics problems & real-world problems

Pirsa: 24040054 Page 61/61