Title: Motion Groupoids

Speakers: Fiona Torzewska

Collection: Higher Categorical Tools for Quantum Phases of Matter

Date: March 20, 2024 - 3:30 PM

URL: https://pirsa.org/24030087

Abstract: The braiding statistics of point particles in 2-dimensional topological phases are given by representations of the braid groups. One approach to the study of generalised particles in topological phases, loop particles in 3-dimensions for example, is to generalise (some of) the several different realisations of the braid group.

In this talk I will construct for each manifold M its motion groupoid \$Mot_M\$, whose object class is the power set of M. I will discuss several different, but equivalent, quotients on motions leading to the motion groupoid. In particular that the quotient used in the construction \$Mot_M\$ can be formulated entirely in terms of a level preserving isotopy relation on the trajectories of objects under flows -- worldlines (e.g. monotonic `tangles').

I will also give a construction of a mapping class groupoid MCG_M associated to a manifold M with the same object class. For each manifold M I will construct a functor $F \subset MCG_M$, and prove that this is an isomorphism if $\pi \$ and $\pi \$ of the appropriate space of self-homeomorphisms of M is trivial. In particular there is an isomorphism in the physically important case $M=[0,1]^n\$ with fixed boundary, for any $\pi \$

I will discuss several examples throughout.

Pirsa: 24030087 Page 1/57

MOTION GROUPOIDS

arXiv:2103.10377, with Paul Martin, João Faria Martins

Fiona Torzewska

University of Bristol

Pirsa: 24030087 Page 2/57

BRIEF OVERVIEW

- (I) Construction of the motion groupoid $\operatorname{Mot}_{\underline{M}}$ of a pair $\underline{M} = (M, A)$. Morphisms are equivalence classes of continuous flows of ambient space M which fix A, acting on $\mathcal{P}M$. Recover classical definition of the motion group associated to a manifold M and a submanifold $N \in \mathcal{P}M$, by looking at the morphism group at N. Obtain groups isomorphic to braid groups, loop braid groups.
- (II) Construction of mapping class groupoid $MCG_{\underline{M}}$.

 Morphisms are now equivalence classes of homeomorphisms of M, fixing A. The object set is again $\mathcal{P}M$. Again obtain groups isomorphic to braid groups, loop braid groups.
- (III) Construction of functor $F: Mot_{\underline{M}} \to MCG_{\underline{M}}$. We prove that this is an isomorphism when π_0 and π_1 of space of homeomorphisms of M fixing A are trivial. E.g. $\underline{M} = ([0,1]^n, \partial [0,1]^n)$.

Pirsa: 24030087 Page 3/57

MOTIVATION

AIM: To construct algebraic structures useful for modelling generalised particle motion in topological phases.

- · Very general ambient space, particle types allowed.
- · Study object sets in a unified way, questions about skeletons etc.
- · Allows access to higher categorical structures e.g. monoidal.
- Facilitates passage between motions and generalised tangles/ defect
 TQFT
- Morphisms which do not start and end in the same configuration allowed.
- Expect interesting new algebraic structures

2

Pirsa: 24030087 Page 4/57

Space of self-homeomorphisms of a manifold M

Let $\underline{M} = (M, A)$ be a pair of a manifold and a subset. Let $H_{\underline{M}} \subset \mathbf{Top}(M, M)$ is the set of homeomorphisms of M which fix A pointwise with the compact-open topology. Notice this also has a group structure.

Lemma

(Hatcher) Let X be a compact space and Y a metric topological space with metric d. Then

(i) the function

$$d'(f,g) := \sup_{x \in X} d(f(x), g(x))$$

is a metric on Top(X, Y); and

(ii) the compact open topology on Top(X, Y) is the same as the one defined by the metric d'.

3

Pirsa: 24030087 Page 5/57

GROUPOIDS OF SELF HOMEOMORPHISMS

Let $\underline{M} = (M, A)$ be a pair of a manifold and a subset.

Lemma

There is a (left) group action

$$\sigma: \mathbf{H}_{\underline{M}} \times \mathcal{P}M \to \mathcal{P}M$$
$$(\mathfrak{f}, N) \mapsto \mathfrak{f}(N).$$

1

GROUPOIDS OF SELF HOMEOMORPHISMS

Proposition

Thus there is an action groupoid $\operatorname{Homeo}_{\underline{M}}$ obtained from σ . Explicitly the object set is $\mathcal{P}M$ and the morphisms in $\operatorname{Homeo}_{\underline{M}}(N,N')$ are triples $(\mathfrak{f},N,\mathfrak{f}(N))$ where

- $f: M \to M$ is a homeomorphism,
- f(N) = N',
- f fixes A pointwise.

We will denote triples $(f, N, f(N)) \in \operatorname{Homeo}_{\underline{M}}(N, N')$ as $f: N \curvearrowright N'$. Identity: $\operatorname{id}_M: N \curvearrowright N$ Inverse: $f: N \curvearrowright N' \mapsto f^{-1}: N' \curvearrowright N$.

We will also sometimes identify $\operatorname{Homeo}_{\underline{M}}(N,N')$ with the projection to the first element of the triple. Then can equip morphism sets with a topology and $\operatorname{H}_{\underline{M}} = \operatorname{Homeo}_{\underline{M}}(\varnothing,\varnothing) = \operatorname{Homeo}_{\underline{M}}(M,M)$ and every $\operatorname{Homeo}_{\underline{M}}(N,N') \subseteq \operatorname{H}_{\underline{M}}$. Notice each self-homeomorphism $\mathfrak f$ of M will belong to many such $\operatorname{Homeo}_{\underline{M}}(N,N')$.

5

Pirsa: 24030087 Page 7/57

FLOWS

Definition

Fix a manifold, subset pair $\underline{M} = (M, A)$. A flow in \underline{M} is a map $f \in \mathsf{Top}(\mathbb{I}, H_{\underline{M}})$ with $f_0 = \mathrm{id}_M$. Define,

$$\operatorname{Flow}_{\underline{M}} = \{ f \in \operatorname{\mathsf{Top}}(\mathbb{I}, \mathcal{H}_{\underline{M}}) \mid f_0 = \operatorname{id}_{M} \}.$$

Example

For any manifold M the path $f_t = id_M$ for all t, is a flow. We will denote this flow Id_M .

Example

For $M=S^1$ (the unit circle) we may parameterise by $\theta \in \mathbb{R}/2\pi$ in the usual way. Consider the functions $\tau_{\phi}: S^1 \to S^1$ ($\phi \in \mathbb{R}$) given by $\theta \mapsto \theta + \phi$, and note that these are homeomorphisms. Then consider the path $f_t = \tau_{t\pi}$ ('half-twist'). This is a flow.

6

Pirsa: 24030087 Page 8/57

Pirsa: 24030087 Page 9/57

OBTAINING NEW FLOWS FROM OLD

Lemma

Let M be a manifold. For any flow f in $\underline{M} = (M,A)$, then $(f^{-1})_t = f_t^{-1}$ is a flow. NOTE: Proof uses that $H_{\underline{M}}$ is a topological group when M is locally compact and locally connected (Arens). This means the product map and inverse map are continuous.

Lemma

Let M be a manifold. There exists a set map

$$\overline{:} \operatorname{Flow}_{\underline{M}} \to \operatorname{Flow}_{\underline{M}}$$

$$f \mapsto \overline{f}$$

with

$$\bar{f}_t = f_{(1-t)} \circ f_1^{-1}.$$
 (1)

8

Pirsa: 24030087 Page 10/57

OBTAINING NEW FLOWS FROM OLD

Proposition

Let M be a manifold. There exists a composition

$$*: \operatorname{Flow}_{\underline{M}} \times \operatorname{Flow}_{\underline{M}} \to \operatorname{Flow}_{\underline{M}}$$
$$(f,g) \mapsto g * f$$

where

$$(g * f)_t = \begin{cases} f_{2t} & 0 \le t \le 1/2, \\ g_{2(t-1/2)} \circ f_1 & 1/2 \le t \le 1. \end{cases}$$
 (2)

For a pair $\underline{M} = (M, A)$, (Flow_M, *) is a magma.

9

Pirsa: 24030087 Page 11/57

OBTAINING NEW PRE-MOTIONS FROM OLD

Proposition

Let M be a manifold. There is an associative composition

$$\cdot: \operatorname{Flow}_{\underline{M}} \times \operatorname{Flow}_{\underline{M}} \to \operatorname{Flow}_{\underline{M}}$$
$$(f, g) \mapsto g \cdot f$$

where $(g \cdot f)_t = g_t \circ f_t$.

NOTE: Again proof uses that $H_{\underline{M}}$ is a topological group.

Lemma

For a manifold M, (Flow_M, ·) is a group, with identity Id_M and inverse map $(f^{-1})_t = (f_t)^{-1}$.

Lemma

For $f, g \in \text{Flow}_{\underline{M}}$, $f^{-1} \stackrel{p}{\sim} \overline{f}$ and $g \cdot f \stackrel{p}{\sim} g * f$.

10

Pirsa: 24030087 Page 12/57

MOTIONS

Definition

Fix a $\underline{M} = (M, A)$. A motion in M is a triple $(f, N, f_1(N))$ consisting of a flow $f \in \operatorname{Flow}_{\underline{M}}$, a subset $N \subseteq M$ and the image of N at the endpoint of f, $f_1(N)$.

We will denote such a triple by $f: N \hookrightarrow N'$ where $f_1(N) = N'$, and say it is a motion from N to N'.

$$Mt_M(N, N') = \{ \text{motions } f: N \smile N' \}$$

Pirsa: 24030087 Page 13/57

MOTIONS

12

Pirsa: 24030087 Page 14/57

MOTIONS

For any $N \subset M$, $Id_M: N \hookrightarrow N$ is a motion. Let $f: N \hookrightarrow N'$ and $g: N' \hookrightarrow N''$ be motions in M, then $g \cdot f: N \hookrightarrow N''$ $((g \cdot f)_t = g_t \circ f_t)$ is a motion.

Lemma

There is a group action of $(Flow_{\underline{M}}, \cdot)$ on $\mathcal{P}M$, thus there is an action groupoid

$$\operatorname{Mt}_{\underline{M}}^{\boldsymbol{\cdot}}=(\mathcal{P}M,\operatorname{Mt}_{\underline{M}}(N,N'),\cdot,\operatorname{Id}_{M},f^{-1}).$$

Similarly $g * f: N \hookrightarrow N''$ is a motion.

Lemma

There is a magma action of $(Flow_M, *)$ on PM we obtain an action magmoid

$$\operatorname{Mt}_{\underline{M}}^* = (\mathcal{P}M, \operatorname{Mt}_{\underline{M}}(N, N'), *).$$

13

Pirsa: 24030087 Page 15/57

Motions as maps $M \times \mathbb{I} \to M \times \mathbb{I}$

Definition

Let $\underline{M} = (M, A)$ and $\underline{M \times \mathbb{I}} = (M \times \mathbb{I}, A \times \mathbb{I})$, and $N, N' \subset M$ subsets. Let

$$\operatorname{Mt}_{\underline{M}}^{hom}(N,N') \subset \operatorname{H}_{\underline{M} \times \mathbb{I}}$$

denote the subset of homeomorphisms $g \in \mathcal{H}_{M \times \mathbb{I}}$ such that

- (I) g(m,0) = (m,0) for all $m \in M$,
- (II) $g(M \times \{t\}) = M \times \{t\}$ for all $t \in \mathbb{I}$, and
- (III) $g(N \times \{1\}) = N' \times \{1\}.$

Theorem (T., Faria Martins, Martin)

Let M be a manifold and $N, N' \subset M$. There is a bijection

$$\Theta: \operatorname{Mt}_{\underline{M}}(N,N') \to \operatorname{Mt}_{\underline{M}}^{hom}(N,N'),$$

$$f \mapsto ((m,t) \mapsto (f_t(m),t)).$$

14

Pirsa: 24030087 Page 16/57

MOTIONS AS MAPS $M \times \mathbb{I} \to M \times \mathbb{I}$

Theorem

Let M be a manifold and $N, N' \subseteq M$. There is a bijection

$$\Theta: \operatorname{Mt}_{\underline{M}}(N,N') \to \operatorname{Mt}_{\underline{M}}^{hom}(N,N'),$$

$$f \mapsto ((m,t) \mapsto (f_t(m),t)).$$

Idea of proof

(e.g. Hatcher) As M is locally compact, Hausdorff, there is a bijection

$$\Phi$$
: Top(\mathbb{I} , TOP(M , M)) \rightarrow Top($M \times \mathbb{I}$, M).

(Coming from an adjunction between the product functor $M \times -$ and the hom functor TOP(M, -)). It follows that the image is continuous. To show that the image is a homeomorphism we need that $TOP^h(M, M)$ is a topological group.

15

Pirsa: 24030087 Page 17/57

 $M = \mathbb{I}$

16

Pirsa: 24030087 Page 18/57

 \mapsto

 $M = \mathbb{I}$

17

Pirsa: 24030087 Page 19/57

* COMPOSITION WHEN $M = \mathbb{I}$

18

Pirsa: 24030087 Page 20/57

CONGRUENCE BY SET-STATIONARY MOTIONS

Definition

Let $\underline{M} = (M, A)$ be a manifold, subset pair and $N \subset M$ a subset. A motion $f: N \hookrightarrow N$ in \underline{M} is said to be \underline{N} -stationary if $f_t(N) = N$ for all $t \in \mathbb{I}$. Define

$$\operatorname{SetStat}_{\underline{M}}^{N} = \left\{ f : N \leadsto N \in \operatorname{Mt}_{\underline{M}}(N,N) \mid f_{t}(N) = N \text{ for all } t \in \mathbb{I} \right\}.$$

Example

Let $M = D^2$ and let $\tau_{2\pi}$ denote a flow such that $(\tau_{2\pi})_t$ is a $2\pi t$ rotation of the disk. Now let N be a circle centred on the centre of the disk. Then $\tau_{2\pi}: N \hookrightarrow N$ is N-stationary.

Example

Let $M = D^2$, the 2-disk and let $N \subset M$ be a finite set of points. Then a motion $f: N \hookrightarrow N$ is N-stationary if and only if $f_t(x) = x$ for all $x \in N$ and $t \in \mathbb{I}$. More generally this holds if N is a totally disconnected subspace of M, e.g. \mathbb{Q} in \mathbb{R} .

10

Pirsa: 24030087 Page 21/57

CONGRUENCE BY SET-STATIONARY MOTIONS

Lemma

For $N, N' \subset M$, denote by $\stackrel{m}{\sim}$ the relation

$$f: N \hookrightarrow N' \stackrel{m}{\sim} g: N \hookrightarrow N' \text{ if } \overline{g} * f \in [\text{SetStat}_{M}^{N}]_{p}$$

on $\operatorname{Mt}_{\underline{M}}(N, N')$. This is an equivalence relation. We call this <u>motion-equivalence</u> and denote by $[f: N \hookrightarrow N']_m$ the motion-equivalence class of $f: N \hookrightarrow N'$.

Idea of proof

Quotient first by path-homotopy. Then classes which intersect $\operatorname{SetStat}_{\underline{M}}^{N}(N,N)$ form a totally disconnected normal subgroupoid. Can be proved in general that for any totally disconnected, normal subgroupoid \mathcal{H} of a groupoid \mathcal{G} there is a congruence given by the relation $g_1 \sim g_2$ if $g_2^{-1} *_{\mathcal{G}} g_1 \in \mathcal{H}$. This leads to an equivalent relation to the given relation.

20

Pirsa: 24030087 Page 22/57

MOTION GROUPOID

Theorem

Let $\underline{M} = (M, A)$ where M is a manifold and $A \subset M$ a subset. There is a groupoid

$$\operatorname{Mot}_{\underline{M}} = (\mathcal{P}M, \operatorname{Mt}_{\underline{M}}(N, N') / \stackrel{m}{\sim}, *, [\operatorname{Id}_{M}]_{m}, [f]_{m} \mapsto [\overline{f}]_{m})$$

where

- (I) objects are subsets of M;
- (II) morphisms between subsets N, N' are motion-equivalence classes $[f: N \hookrightarrow N']_m$ of motions;
- (III) composition of morphisms is given by

$$[g:N' \hookrightarrow N'']_m * [f:N \hookrightarrow N']_m = [g * f:N \hookrightarrow N'']_m.$$

- (IV) the identity at each object N is the motion-equivalence class of $\operatorname{Id}_M: N \hookrightarrow N$, $(\operatorname{Id}_M)_t(m) = m$ for all $m \in M$;
- (V) the inverse for each morphism $[f: N \hookrightarrow N']_m$ is the motion-equivalence class of $\bar{f}: N' \hookrightarrow N$ where $\bar{f}_t = f_{(1-t)} \circ f_1^{-1}$.

21

Pirsa: 24030087 Page 23/57

MOTION GROUPOID

Proposition

Let $\underline{M} = (M, A)$ where M is a manifold and $A \subset M$ a subset, then

$$\operatorname{Mot}_{\underline{M}} = (\mathcal{P}M, \operatorname{Mt}_{\underline{M}}(N, N') / \stackrel{m}{\sim}, \cdot, [\operatorname{Id}_{M}]_{m}, [f]_{m} \mapsto [f^{-1}]_{m}).$$

Proof

It is sufficient to observe that motions which are path equivalent are motion equivalent. Let g, f be flows satisfying $f \stackrel{p}{\sim} g$, then $\bar{g} * f \stackrel{p}{\sim} g^{-1} \cdot f \stackrel{p}{\sim} g^{-1} \cdot g$, using that $\bar{g} \stackrel{p}{\sim} g^{-1}$, and $g * f \stackrel{p}{\sim} g \cdot f$. Then for all $t \in \mathbb{I}$, $(g^{-1} \cdot g)_t(N) = N$, hence it is stationary.

22

Pirsa: 24030087 Page 24/57

On $\mathrm{Mot}_{\mathbb{I}}$

Suppose $N \subset \mathbb{I} \setminus \{0,1\}$ is a compact subset with a finite number of connected components i.e. N is a union of points and closed intervals.

We can assign a word in $\{a,b\}$ to N by representing each point in N by a and each interval by b, ordered in the obvious way using the natural ordering on \mathbb{I} . Let $N' \subset \mathbb{I} \setminus \{0,1\}$ be another subset defined in the same way. If the word assigned to N and N' is the same, $|\mathrm{Mot}_{\mathbb{I}}(N,N')| = 1$. Otherwise $\mathrm{Mot}_{\mathbb{I}}(N,N') = \emptyset$.

Pirsa: 24030087 Page 25/57

BRAID GROUPS AND LOOP BRAID GROUPS

Theorem (T., Faria Martins, Martin)

Let n be a positive integer. Consider $M = D^2$. Given any finite subset K, with n elements, in the interior of D^2 , then $\mathrm{Mot}_{D^2}(K,K)$ is isomorphic to the braid group in n strands (as in 'Theory of Braids', Artin). In particular the image of the class of a motion which moves points as below is an elementary braid on two strands.

Also if $\underline{D^3} = (D^3, \partial D^3)$ and $L \subset D^3$ is an unlink in the interior with n components, then $\mathrm{Mot}_{\underline{D^3}}(L, L)$ is isomorphic to the extended loop braid group (as in 'A journey through loop braid groups', Damiani).

Pirsa: 24030087 Page 26/57

RELATING MOTION GROUPOIDS

Lemma

Let (M,A) and (M',A') be pairs such that there exists a homeomorphism $\psi: M \to M'$ satisfying $\psi(A) = A'$. Then there is a isomorphism of categories

$$\Psi: \operatorname{Mot}_{\underline{M}} \to \operatorname{Mot}_{\underline{M'}}$$

defined as follows. On objects $N \subset M$, $\Psi(N) = \psi(N)$. For a motion $f: N \hookrightarrow N'$ in M, let $(\psi \circ f \circ \psi^{-1})_t = \psi \circ f_t \circ \psi^{-1}$. Then Ψ sends the equivalence class $[f: N \hookrightarrow N']_m$ to the equivalence class $[\psi \circ f \circ \psi^{-1}: \psi(N) \to \psi(N')]_m$.

25

Pirsa: 24030087 Page 27/57

RELATING AUTOMORPHISM GROUPS

Proposition

For any pair (M,A) and subset $N \subseteq M$ there is an involutive endofunctor on Mot_M defined by

$$\operatorname{Mot}_{\underline{M}}(N,N) \cong \operatorname{Mot}_{\underline{M}}(M \smallsetminus N, M \smallsetminus N),$$
$$f: N \hookrightarrow N' \mapsto f: M \smallsetminus N \hookrightarrow M \smallsetminus N'.$$

Notice that generally these automorphism groups are not connected in the motion groupoid - this would imply N homeomorphic to $M \setminus N$.

26

Pirsa: 24030087 Page 28/57

ALTERNATIVE EQUIVALENCE RELATIONS ON THE MOTION GROUPOID

Pirsa: 24030087 Page 29/57

WORLDLINES OF MOTIONS

Definition

The <u>worldline</u> of a motion $f: N \hookrightarrow N'$ in a manifold M is

$$W(f: N \hookrightarrow N') := \bigcup_{t \in [0,1]} f_t(N) \times \{t\} \subseteq M \times \mathbb{I}.$$

Proposition

Let $f, g: N \hookrightarrow N'$ be motions with the same worldline, so we have

$$W(f: N \hookrightarrow N') = W(g: N \hookrightarrow N').$$

Then $f: N \hookrightarrow N'$ and $g: N \hookrightarrow N'$ are motion equivalent.

Proof

For all $t \in \mathbb{I}$, $(g^{-1} \cdot f)_t(N) = g_t^{-1} \circ g_t(N) = N$. Thus $g^{-1} \cdot f$ is N-stationary, and hence $\bar{g} * f$ path-homotopic to a stationary motion.

27

Pirsa: 24030087 Page 30/57

WORLDLINES OF MOTIONS

Theorem (T., Faria Martins, Martin) Let $\underline{M} = (M, A)$ where M is a manifold and $A \subset M$ a subset. Two motions $f, f': N \hookrightarrow N'$ in Mt_M are motion equivalent if, and only if, their worldlines are level preserving ambient isotopic, relative to $(M \times (\{0,1\})) \cup (A \times \mathbb{I})$, pointwise.

28

Pirsa: 24030087 Page 31/57

RELATIVE PATH-EQUIVALENCE

Definition

Fix a pair (M,A). Define a relation on $\operatorname{Mt}_{\underline{M}}(N,N')$ as follows. Let $f: N \hookrightarrow N' \stackrel{rp}{\sim} g: N \hookrightarrow N'$ if the motions $f: N \hookrightarrow N'$ and $g: N \hookrightarrow N'$ are relative path-homotopic. This means there exists a continuous map

$$H: \mathbb{I} \times \mathbb{I} \to H_{\underline{M}}$$

such that

- for any fixed $s \in \mathbb{I}$, $t \mapsto H(t,s)$ is a motion from N to N',
- for all $t \in \mathbb{I}$, $H(t, 0) = f_t$, and
- for all $t \in \mathbb{I}$, $H(t, 1) = g_t$.

We call such a homotopy a <u>relative path-homotopy</u>.

29

Pirsa: 24030087 Page 32/57

RELATIVE PATH-EQUIVALENCE

30

Pirsa: 24030087 Page 33/57

RELATIVE PATH-EQUIVALENCE

Theorem (T., Faria Martins, Martin)

For a pair $\underline{M} = (M, A)$ and a motion $f: N \hookrightarrow N'$ in \underline{M} we have

$$[f: N \hookrightarrow N']_{rp} = [f: N \hookrightarrow N']_{m}.$$

Key ingredients of proof

Direct construction of appropriate homotopies. Uses normality of stationary motions.

Relative path equivalence is precisely the equivalence relation in the relative fundamental group, hence

$$\operatorname{Mot}_{M}(N, N) = \pi_{1}(\operatorname{Homeo}_{M}(\emptyset, \emptyset), \operatorname{Homeo}_{M}(N, N), \operatorname{id}_{M})$$

We will need this later!

31

Pirsa: 24030087 Page 34/57

MAPPING CLASS GROUPOID

Recall that for a pair $\underline{M} = (M, A)$ and for subsets $N, N' \subset M$, morphisms in $\operatorname{Homeo}_{\underline{M}}(N, N')$ are triples denoted $\mathfrak{f}: N \curvearrowright N'$ where $\mathfrak{f} \in H_{\underline{M}}$ and $\mathfrak{f}(N) = N'$. We also think of the elements of $\operatorname{Homeo}_{\underline{M}}(N, N')$ as the projection to the first coordinate of each triple i.e. $\mathfrak{f} \in H_M$ such that $\mathfrak{f}(N) = N'$.

Definition

Let $N, N' \subset M$. For any $\mathfrak{f}: N \curvearrowright N'$ and $\mathfrak{g}: N \curvearrowright N'$ in $\operatorname{Homeo}_{\underline{M}}(N, N')$, $\mathfrak{f}: N \curvearrowright N'$ is said to be <u>isotopic</u> to $\mathfrak{g}: N \curvearrowright N'$, denoted by $\stackrel{i}{\sim}$, if there exists a continuous map

$$H: M \times \mathbb{I} \to M$$

such that

- for all fixed $s \in \mathbb{I}$, the map $m \mapsto H(m, s)$ is in $\mathrm{Homeo}_M(N, N')$,
- for all $m \in M$, H(m, 0) = f(m), and
- for all $m \in M$, $H(m, 1) = \mathfrak{g}(m)$.

We call such a map an isotopy from $\mathfrak{f}: N \curvearrowright N'$ to $\mathfrak{g}: N \curvearrowright N'$.

32

Pirsa: 24030087 Page 35/57

MAPPING CLASS GROUPOIDS

Lemma

The family of relations $(\operatorname{Homeo}_{M}(N, N'), \stackrel{i}{\sim})$ for all pairs $N, N' \subseteq M$ are a congruence on $Homeo_M$.

Theorem (T., Faria Martins, Martin) Let $\underline{M} = (M, A)$ be a manifold submanifold pair. There is a groupoid

$$\mathrm{MCG}_{\underline{M}} = (\mathcal{P}M, \mathrm{Homeo}_{\underline{M}}(N, N') / \stackrel{i}{\sim}, \circ, [\mathrm{id}_{M}], [\mathfrak{f}] \mapsto [\mathfrak{f}^{-1}]).$$

We call this the <u>mapping class groupoid of M.</u>

33

Pirsa: 24030087 Page 36/57

MAPPING CLASS GROUPOIDS

Using bijection

$$\Phi: \mathsf{Top}(\mathbb{I}, \mathsf{TOP}(M, M)) \to \mathsf{Top}(M \times \mathbb{I}, M),$$

a continuous map $M \times \mathbb{I} \to M$ which is an isotopy corresponds to a path $\mathbb{I} \to \operatorname{Homeo}_M(N,N')$ from \mathfrak{f} to \mathfrak{g} . Hence

Lemma

Let M be a manifold. We have that as sets

$$MCG_{\underline{M}}(N, N') = \pi_0(Homeo_{\underline{M}}(N, N')).$$

3

Pirsa: 24030087 Page 37/57

MAPPING CLASS GROUPOIDS

Pirsa: 24030087 Page 38/57

35

Mapping class groupoid, $M = S^1$

Example If $\underline{S^1} = (S^1, \emptyset)$, we have

$$MCG_{\underline{S}^1}(\emptyset,\emptyset) = \mathbb{Z}/2\mathbb{Z}.$$

 H_{S^1} has two path-components, containing respectively the orientation preserving and the orientation reversing homeomorphisms from S^1 to itself. Each is homotopic to S^1 (Hamstrom). Therefore the homomorphism $\pi_0(\operatorname{Homeo}_{\underline{S^1}}(\varnothing,\varnothing)) \to \{\pm 1\} \cong \mathbb{Z}/2\mathbb{Z}$ induced by the degree homomorphism $\deg: H_{S^1} = \operatorname{Homeo}_{\underline{S^1}}(\varnothing,\varnothing) \to \{\pm 1\}$ is an isomorphism.

36

Pirsa: 24030087 Page 39/57

EXAMPLE

Proposition

Let $\underline{D^2} = (D^2, \partial D^2)$. The morphism group $MCG_{\underline{D^2}}(\emptyset, \emptyset)$ is trivial.

Proof

(This follows from the Alexander trick.) Suppose we have $\mathfrak{f}: \varnothing \curvearrowright \varnothing$ in $\underline{D^2}$. Define

$$f_t(x) = \begin{cases} t \, \mathfrak{f}(x/t) & 0 \le |x| \le t, \\ x & t \le |x| \le 1. \end{cases}$$

Notice that $f_0 = \operatorname{id}_{D^2}$ and $f_1 = \mathfrak{f}$ and each f_t is continuous. Moreover:

$$H: D^2 \times \mathbb{I} \to D^2,$$

 $(x,t) \mapsto f_t(x)$

is a continuous map. So we have constructed an isotopy from any boundary preserving self-homeomorphism of D^2 to id_{D^2} .

37

Pirsa: 24030087 Page 40/57

FUNCTOR FROM THE MOTION GROUPOID TO THE MAPPING CLASS GROUPOID

Pirsa: 24030087 Page 41/57

Functor $F: \operatorname{Mot}_{\underline{M}} \to \operatorname{MCG}_{\underline{M}}$

Theorem (T., Faria Martins, Martin) Let $\underline{M} = (M, A)$. There is a functor

$$\mathsf{F} \colon \mathrm{Mot}_{\underline{M}} \to \mathrm{MCG}_{\underline{M}}$$

which is the identity on objects and on morphisms we have

$$F([f:N \hookrightarrow N']_m) = [f_1:N \curvearrowright N']_i.$$

38

Pirsa: 24030087 Page 42/57

Well definedness of F

39

Pirsa: 24030087 Page 43/57

Functor $F: Mot_{\underline{M}} \to MCG_{\underline{M}}$

Lemma The functor

 $\mathsf{F} \colon \mathrm{Mot}_{\underline{M}} \to \mathrm{MCG}_{\underline{M}}$

is full if and only if $\pi_0(\operatorname{Homeo}_M(\emptyset, \emptyset), \operatorname{id}_M)$ is trivial.

40

Pirsa: 24030087 Page 44/57

Functor $F: Mot_{\underline{M}} \to MCG_{\underline{M}}$

Pirsa: 24030087 Page 45/57

41

Functor $F: \operatorname{Mot}_M \to \operatorname{MCG}_M$

(Hatcher) Let X be a space, $Y \subset X$ a subspace and $x_0 \in Y$ a basepoint. There is a long exact sequence:

$$\dots \to \pi_n(Y, \{x_0\}) \xrightarrow{i_*^n} \pi_n(X, \{x_0\}) \xrightarrow{j_*^n} \pi_n(X, Y, \{x_0\})$$

$$\xrightarrow{\partial^n} \pi_{n-1}(Y, \{x_0\}) \xrightarrow{i_*^{n-1}} \dots \xrightarrow{i_*^n} \pi_0(X, \{x_0\}).$$

Maps i and j are inclusions. Maps ∂ are restrictions to single face, in particular

$$\partial^{1}: \pi_{1}(X, A, \{X_{0}\}) \to \pi_{0}(A, \{X_{0}\}),$$
$$[\gamma]_{rp} \mapsto [\gamma(1)]_{p}.$$

42

Pirsa: 24030087 Page 46/57

Functor $F: Mot_M \to MCG_M$

Recall $\operatorname{Mot}_{\underline{M}}(N, N) = \pi_1(\operatorname{Homeo}_{\underline{M}}(\varnothing, \varnothing), \operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{\underline{M}})$ and $\operatorname{MCG}_{\underline{M}}(N, N) = \pi_0(\operatorname{Homeo}_{\underline{M}}(N, N), \operatorname{id}_{\underline{M}}).$

Lemma

Let $\underline{M} = (M, A)$ be a manifold, subset pair, and fix a subset $N \subset M$. Then we have a long exact sequence

$$\dots \to \pi_{n}(\operatorname{Homeo}_{\underline{M}}(N,N),\operatorname{id}_{M}) \xrightarrow{i_{*}^{n}} \pi_{n}(\operatorname{Homeo}_{\underline{M}}(\varnothing,\varnothing),\operatorname{id}_{M}) \xrightarrow{j_{*}^{n}}$$

$$\pi_{n}(\operatorname{Homeo}_{\underline{M}}(\varnothing,\varnothing),\operatorname{Homeo}_{\underline{M}}(N,N),\operatorname{id}_{M}) \xrightarrow{\partial^{n}} \pi_{n-1}(\operatorname{Homeo}_{\underline{M}}(N,N),\operatorname{id}_{M}) \xrightarrow{i_{*}^{n-1}}$$

$$\dots \xrightarrow{\partial^{2}} \pi_{1}(\operatorname{Homeo}_{\underline{M}}(N,N),\operatorname{id}_{M}) \xrightarrow{i_{*}^{1}} \pi_{1}(\operatorname{Homeo}_{\underline{M}}(\varnothing,\varnothing),\operatorname{id}_{M})$$

$$\xrightarrow{j_{*}^{1}} \operatorname{Mot}_{\underline{M}}(N,N) \xrightarrow{F} \operatorname{MCG}_{\underline{M}}(N,N) \xrightarrow{i_{*}^{0}} \pi_{0}(\operatorname{Homeo}_{\underline{M}}(\varnothing,\varnothing),\operatorname{id}_{M})$$

where all maps are group maps and F is the appropriate restriction of the functor $F: Mot_{\underline{M}} \to MCG_{\underline{M}}$.

43

Pirsa: 24030087 Page 47/57

Functor $F: \operatorname{Mot}_M \to \operatorname{MCG}_M$

Lemma Suppose

- $\pi_1(\mathrm{Homeo}_{\underline{M}}(\emptyset,\emptyset),\mathrm{id}_{\underline{M}})$ is trivial, and
- $\pi_0(\mathrm{Homeo}_{\underline{M}}(\emptyset,\emptyset),\mathrm{id}_{\underline{M}})$ is trivial.

Then there is a group isomorphism

 $\mathsf{F} \colon \mathrm{Mot}_{\underline{M}}(N,N) \xrightarrow{\sim} \mathrm{MCG}_{\underline{M}}(N,N).$

Pirsa: 24030087 Page 48/57

Functor $F: Mot_{\underline{M}} \to MCG_{\underline{M}}$

Theorem (T., Faria Martins, Martin) Let M be a manifold. If

- $\pi_1(\mathrm{Homeo}_{\underline{M}}(\emptyset,\emptyset),\mathrm{id}_{\underline{M}})$ is trivial, and
- $\pi_0(\operatorname{Homeo}_{\underline{M}}(\emptyset, \emptyset), \operatorname{id}_{\underline{M}})$ is trivial,

the functor

$$\mathsf{F} \colon\! \mathrm{Mot}_{\underline{M}} \to \mathrm{MCG}_{\underline{M}},$$

is an isomorphism of categories.

45

Page 49/57 Pirsa: 24030087

Functor $F: Mot_M \to MCG_M$

Proof

Suppose $\pi_1(\operatorname{Homeo}_{\underline{M}}(\varnothing,\varnothing),\operatorname{id}_M)$ and $\pi_0(\operatorname{Homeo}_{\underline{M}}(\varnothing,\varnothing),\operatorname{id}_M)$ are trivial. Already proved F is full. We check F is faithful. Let $[f:N \hookrightarrow N']_m$ and $[f':N \hookrightarrow N']_m$ be in $\operatorname{Mot}_{\underline{M}}(N,N')$. If $F([f:N \hookrightarrow N']_m) = F([f':N \hookrightarrow N']_m)$, then

$$[\mathrm{id}_{\mathsf{M}}: \mathsf{N} \curvearrowright \mathsf{N}]_{\mathsf{i}} = \mathsf{F}([f': \mathsf{N} \backsim \mathsf{N}']_{\mathsf{m}})^{-1} \circ \mathsf{F}([f: \mathsf{N} \backsim \mathsf{N}']_{\mathsf{m}})$$

$$= \mathsf{F}([f': \mathsf{N} \backsim \mathsf{N}']_{\mathsf{m}}^{-1} * [f: \mathsf{N} \backsim \mathsf{N}']_{\mathsf{m}})$$

$$= \mathsf{F}([\bar{f'} * f: \mathsf{N} \backsim \mathsf{N}]_{\mathsf{m}}).$$

By group isomorphism this is true if and only if

$$[\bar{f'}*f:N \leadsto N]_{\mathsf{m}} = [\mathrm{Id}_{M}:N \leadsto N]_{\mathsf{m}}$$

which is equivalent to saying $\operatorname{Id}_M * (\bar{f'} * f)$ is path-equivalent to a stationary motion, and hence that $\bar{f'} * f$ is path-equivalent to the stationary motion (since $\operatorname{Id}_M * (\bar{f'} * f) \stackrel{p}{\sim} \bar{f'} * f$). So we have $[f: N \hookrightarrow N']_m = [f': N \hookrightarrow N']_m$.

46

Pirsa: 24030087 Page 50/57

EXAMPLES: $M = D^n$

Proposition Let D^n be the n-disk, and $\underline{D}^n = (D^n, \partial D^n)$. Then we have an isomorphism

$$\mathsf{F} \colon \mathrm{Mot}_{\underline{D^n}} \to \mathrm{MCG}_{\underline{D^n}}.$$

47

Pirsa: 24030087 Page 51/57

EXAMPLES: $M = D^n$

Proposition

Let D^n be the n-disk, and $\underline{D^n} = (D^n, \partial D^n)$. Then we have an isomorphism

$$\mathsf{F} \colon \mathrm{Mot}_{\mathcal{D}^n} \to \mathrm{MCG}_{\mathcal{D}^n}.$$

Idea of proof

We proved that $MCG_{\underline{D^2}}(\varnothing,\varnothing) = \pi_0(\mathrm{Homeo}_{\underline{D^2}}(\varnothing,\varnothing),\mathrm{id}_M)$ is trivial. Alexander trick gives same result for all n. Also $\mathrm{Homeo}_{\underline{D^n}}(\varnothing,\varnothing)$ is contractible (Hamstrom).

47

Pirsa: 24030087 Page 52/57

EXAMPLES: $M = D^2$

Suppose we don't fix the boundary. Let $P_2 \subset D^2$ be a subset consisting of two points equidistant from the centre of the disk. Let τ_{π} be the path in $\mathsf{TOP}^h(D^2,D^2)$ such that $\tau_{\pi t}$ is a πt rotation of the disk.

The motion $\tau_{\pi}: P_2 \hookrightarrow P_2$ represents a non-trivial equivalence class in Mot_{D^2} , and its end point also represents a non trivial element of MCG_{D^2} . Now consider the motion $\tau_{\pi} * \tau_{\pi}: P_2 \hookrightarrow P_2$.

48

Pirsa: 24030087 Page 53/57

EXAMPLES: $M = D^2$

In fact, the map $F: \operatorname{Mot}_{D^2} \to \operatorname{MCG}_{D^2}$ is neither full nor faithful. The space $\operatorname{Homeo}_{D^2}$ is homotopy equivalent to $S^1 \sqcup S^1$, where the first connected component corresponds to orientation preserving homeomorphisms and the second orientation reversing (Hamstrom). Hence we have that $\pi_1(\operatorname{Homeo}_{D^2}(\varnothing,\varnothing),\operatorname{id}_{D^2})=\mathbb{Z}$ where the single generating element corresponds to the 2π rotation. And $\pi_0(\operatorname{Homeo}_{D^2}(\varnothing,\varnothing),\operatorname{id}_{D^2})=\mathbb{Z}/2\mathbb{Z}$. So we have an exact sequence:

$$\ldots \to \pi_1(\operatorname{Homeo}_{D^2}(N,N),\operatorname{id}_{D^2}) \xrightarrow{i_*^1} \mathbb{Z} \to \operatorname{Mot}_{D^2}(N,N) \to \operatorname{MCG}_{D^2}(N,N) \to \mathbb{Z}/2\mathbb{Z}.$$

4

Pirsa: 24030087 Page 54/57

EXAMPLES: $M = S^1$

Let $P \subset S^1$ be a subset containing a single point in S^1 . Similarly to the disk, there is a non-trivial morphism in $\mathrm{Mot}_{\underline{S^1}}(P,P)$ represented by a 2π rotation of the circle.

-

Pirsa: 24030087 Page 55/57

EXAMPLES: $M = S^1$

Note that the connected component containing id_{S^1} of $Homeo_{S^1}(P,P)$ is contractible, (Hamstrom). In particular $\pi_1(Homeo_{S^1}(P,P),id_{S^1})$ is trivial. We also have that $S^1 \sqcup S^1$ is a strong deformation retract of $Homeo_{S^1}(\varnothing,\varnothing)$, with the first copy of S^1 corresponding to orientation preserving homeomorphisms and the second to orientation reversing. Hence the sequence becomes

$$\ldots \to \{1\} \to \mathbb{Z} \to \operatorname{Mot}_{S^1}(P, P) \to \operatorname{MCG}_{S^1}(P, P) \to \mathbb{Z}/2\mathbb{Z}.$$

The exact sequence gives an injective map

 $\mathbb{Z} \cong \pi_1(\operatorname{Homeo}_{\underline{S^1}}(\varnothing,\varnothing),\operatorname{id}_{S^1}) \to \operatorname{Mot}_{S^1}(P,P)$, sending $n \in \mathbb{Z}$ to the equivalence class of the flow tracing a $2n\pi$ rotation of the circle S^1 . The space $\operatorname{Homeo}_{\underline{S^1}}(P,P)$ only has two connected components, consisting of orientations preserving and orientation reversing homeomorphisms of S^1 fixing P. Hence the exact sequence becomes:

$$\dots \to \{1\} \to \mathbb{Z} \xrightarrow{\cong} Mot_{S^1}(P,P) \xrightarrow{0} MCG_{S^1}(P,P) \xrightarrow{\cong} \mathbb{Z}/2\mathbb{Z}.$$

51

Pirsa: 24030087 Page 56/57

MOTION GROUPOIDS

arXiv:2103.10377, with Paul Martin, João Faria Martins

Fiona Torzewska

University of Bristol

Pirsa: 24030087 Page 57/57