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Abstract: The braiding statistics of point particles in 2-dimensiona topological phases are given by representations of the braid groups. One
approach to the study of generalised particles in topological phases, loop particlesin 3-dimensions for example, is to generalise (some of) the several
different realisations of the braid group.

In this talk | will construct for each manifold M its motion groupoid $Mot_M$, whose object class is the power set of M. | will discuss severa
different, but equivalent, quotients on motions leading to the motion groupoid. In particular that the quotient used in the construction $Mot_M$ can
be formulated entirely in terms of a level preserving isotopy relation on the tragjectories of objects under flows -- worldlines (e.g. monotonic
“tangles).

| will also give a construction of a mapping class groupoid $MCG_M$ associated to a manifold M with the same object class. For each manifold M
| will construct a functor $F \colon Mot_M \to MCG_M$, and prove that this is an isomorphism if $\pi_03$ and $\pi_1$ of the appropriate space of
self-homeomorphisms of M is trivial. In particular there is an isomorphism in the physically important case $M=[0,1]"n$ with fixed boundary, for
any $n\in\imathbb{ N} $.

| will discuss several examples throughout.
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(1) Construction of the motion groupoid Moty of a pair M = (M, A).
Morphisms are equivalence classes of continuous flows of ambient
space M which fix A, acting on PM. Recover classical definition of the
motion group associated to a manifold M and a submanifold N € PM, by
looking at the morphism group at N. Obtain groups isomorphic to braid

groups, loop braid groups.

Construction of mapping class groupoid MCGpy.

Morphisms are now equivalence classes of homeomorphisms of M, fixing
A. The object set is again PM. Again obtain groups isomorphic to braid
groups, loop braid groups.

Construction of functor F: Moty - MCGp.
We prove that this is an isomorphism when 79 and m of space of
homeomorphisms of M fixing A are trivial. Eg. M = ([0,1]",9[0,1]").

Pirsa: 24030087 Page 3/57



AIM: To construct algebraic structures useful for modelling generalised
particle motion in topological phases.

- Very general ambient space, particle types allowed.
- Study object sets in a unified way, questions about skeletons etc.
- Allows access to higher categorical structures e.g. monoidal.

- Facilitates passage between motions and generalised tangles/ defect
TQFT

- Morphisms which do not start and end in the same configuration
allowed.

- Expect interesting new algebraic structures
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Let M = (M,A) be a pair of a manifold and a subset. Let Hy c Top(M, M) is the
set of homeomorphisms of M which fix A pointwise with the compact-open
topology. Notice this also has a group structure.

(Hatcher) Let X be a compact space and Y a metric topological space with
metric d. Then
(i) the function

d'(f.9) = supd(f(x).g(x))

XeX

IS a metric on Top(X,Y); and
(ii) the compact open topology on Top(X,Y) is the same as the one defined
by the metric d'.
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Let M = (M,A) be a pair of @ manifold and a subset.

There is a (left) group action

o:Hm x PM - PM
(F.N) = §(N).
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Thus there is an action groupoid Homeoy oObtained from o. Explicitly the
object set is PM and the morphisms in Homeow (N, N’) are triples (f, N, §f(N))
where

* §:M = M is a homeomorphism,
- f(N) =N,
- § fixes A pointwise.

We will denote triples (f, N, f(N)) € Homeou (N, N") as §: N ~ N,
Identity: idwy: N ~ N Inverse: f:N ~ N’ — f*: N/ ~N.

We will also sometimes identify Homeoyu (N, N’) with the projection to the first
element of the triple. Then can equip morphism sets with a topology and

Hy = Homeoy (2, @) = Homeoy (M, M) and every Homeoyn(N,N") € Hy. Notice
each self-homeomorphism § of M will belong to many such Homeou (N, N”).
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Fix @ manifold, subset pair M = (M,A). A iIn Misa map feTop(I,Hu) with
fo = idy. Define,

Fl(_)\\'M = {fe TOD(H. Hm) ‘fo = i(lm}.

Example _ _ _
For any manifold M the path f; =idy for all ¢, is a flow. We will denote this

flow Idu.

Example
For M = S' (the unit circle) we may parameterise by # € R/2x in the usual way.

Consider the functions 7, : S' - S' (¢ € R) given by 8 — 6 + ¢, and note that
these are homeomorphisms. Then consider the path f; = ¢ (‘half-twist’). This
s a flow,
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Let M be a manifold. For any flow fin M = (M.A), then (f ") =f;"is a flow.

NOTE: Proof uses that Hy is a topological group when M is locally compact
and locally connected (Arens). This means the product map and inverse map

are continuous.

Let M be a manifold. There exists a set map

E Fl(_)\\M =3 FlOWM

fof

?t = f(1—t) Of1_1-
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Let M be a manifold. There exists a composition

*: Fl(_)\\'M X Fl(_)\\'M — Fl(_)\\'M

(5,9) =g +f

fat 0<t<12,
Oat-12) oft 1/2<t <.

(Q*Dt{

For a pair M = (M,A), (Flowy, *) is @ magma.
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Let M be a manifold. There is an associative composition

- :Flowy x Flowy — Flowpy

(f,.g)~=g-f

where (g 'Df = (Jt Of{.
NOTE: Again proof uses that Hy is a topological group.

For a manifold M, (Flowp,-) is a group, with identity Idy and inverse map

FNe= ()7

Forf,g e Flowy, f'2fand g-fR g «f.

Page 12/57



Definition o _ _ o
FixaM=(M,A). Amotionin Mis atriple (f,N,f1(N)) consisting of a flow

f e Flowy, a subset N ¢ M and the image of N at the endpoint of f, f1(N).

We will denote such a triple by f:N < N where f;(N) = N/, and say it is a
motion from N to N’

Mty(N,N") = {motions f: N <« N’}
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Forany Nc M, Id,:N <= N is a motion. Let f:N = N" and g: N" ~= N” be motions
inM, then g-f:N <= N"” ((g-f)t = ge o ft) is @a motion.

There is a group action of (Flowy,-) on PM, thus there is an action groupoid

Mty = (PM, Mty (N,N"),-, Tdu.f™).

Similarly g = f:N ~ N is a motion.

There is a magma action of (Flowy, *) on PM we obtain an action magmoid

Mty = (PM, Mtu(N,N), *).
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Definition
letM=(M,A)and MxT=(MxT,AxI), and N,N" c M subsets. Let

Mep™ (N.N') € Huxt

denote the subset of homeomorphisms g € Hu,1 such that

(1) g(m,0)=(m.0) forall meM,
(1) g(Mx {t})=Mx{t} forall tel, and

(1) g(N x {1}) = N’ x {1}.

Let M be a manifold and N, N" c M. There is a bijection

©: Mty (N, N) — Mty (N,N"),
fe ((mt) = (fi(m),1)).
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Let M be a manifold and N, N" ¢ M. There is a bijection

©: Mty(N,N) - My?™(N,N").
fe ((m 1) = (ft(m),1)).

(e.g. Hatcher) As M is locally compact, Hausdorff, there is a bijection
o: Top(I, TOP(M,M)) - Top(M x I, M).

(Coming from an adjunction between the product functor M x — and the hom
functor TOP(M, -)). It follows that the image is continuous. To show that the
Image is @ homeomorphism we need that TOP" (M, M) is a topological group.
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Definition . _ ‘
Let M = (M,A) be a manifold, subset pair and N ¢ M a subset. A motion

fiN <= Nin M is said to be N-stationary if fy(N) = N for all t e I. Define

SetStaty = {f: N <= N e Mty(N,N) | f{(N) =N foralltel}.

Example _
Let M = D? and let 7> denote a flow such that (mx)¢ is a 2t rotation of the

disk. Now let N be a circle centred on the centre of the disk. Then 7, _:N = N
IS N-stationary.

Example
Let M = D?, the 2-disk and let N ¢ M be a finite set of points. Then a motion

f:N = N is N-stationary if and only if fi(x) =x forall xe Nand te 1. More
generally this holds if N is a totally disconnected subspace of M, eg. Q in R.
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For N,N’ ¢ M, denote by % the relation

fiN N T g:N < N" if G+ fe [SetStaty],

on Mty (N, N"). This is an equivalence relation.
We call this motion-equivalence and denote by [f: N« N], the
motion-equivalence class of f:N «= N’.

Quotient first by path-homotopy. Then classes which intersect SetStath (N, N)
form a totally disconnected normal subgroupoid. Can be proved in gen_eral
that for any totally disconnected, normal subgroupoid H of a groupoid G
there is a congruence given by the relation gy ~ g, if g5' *g g1 € H. This leads
to an equivalent relation to the given relation.
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Let M = (M,A) where M is a manifold and A ¢ M a subset. There is a groupoid

Moty = (PM, Mtu(N,N)/ =, +,[Iduls, [f]n = )

where
objects are subsets of M;

morphisms between subsets N, N’ are motion-equivalence classes
[f:N <= N'], of motions;

composition of morphisms is given by
[Q:N’ = N”]Hl * I:fN = Nf]m = [g *f: N s N”]m-

the identity at each object N is the motion-equivalence class of

[dy: N~ N, (Idy):(m) =m for all m e M;

the inverse for each morphism [f: N~ N’], is the motion-equivalence
class of f: N < N where f; = fa_py o f;".
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Let M = (M,A) where M is @ manifold and A ¢ M a subset, then

Moty = (PM, Mty(N,N)/ %, [Idmulns [l [F ')

It is sufficient to observe that motions which are path equivalent are motion
equivalent. Let g, f be flows satisfying f2 g, theng«f2g'-fE g g, using
that g2 g, and g+fLg-f Thenforalltel, (g7 g):(N) = N, hence it is
stationary.
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Suppose N c I~ {0,1} is a compact subset with a finite number of connected
components i.e. N is a union of points and closed intervals.

We can assign a word in {a.b} to N by representing each point in N by a and
each interval by b, ordered in the obvious way using the natural ordering on 1.

Let N" c T~ {0,1} be another subset defined in the same way. If the word
assigned to N and N’ is the same, [Moty(N,N")| = 1. Otherwise Moty(N,N") = .
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Let n be a positive integer. Consider M = D?. Given any finite subset K, with n
elements, in the interior of D?, then Motp: (K, K) is isomorphic to the braid
group in n strands (as in ‘Theory of Braids), Artin). In particular the image of
the class of @ motion which moves points as below is an elementary braid on

two strands.

Also if D* = (D3,0D%) and L c D* is an unlink in the interior with n
components, then Motps (L, L) Is isomorphic to the extended loop braid group,

(asin ‘A journey through loop braid groups’, Damiani).
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Let (M,A) and (M, A") be pairs such that there exists a homeomorphism
p:M — M’ satisfying ¢ (A) = A’. Then there is a isomorphism of categories

W: Moty = Motwr

defined as follows. On objects N ¢ M, W(N) =+ (N). For a motion f: N < N’ in
M, let (poforp ™) =4 ofroy™ 1. Then W sends the equivalence class

[f:N < N'], to the equivalence class [¢) o fop™:ah(N) = (N")]n.
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For any pair (M,A) and subset N ¢ M there is an involutive endofunctor on
Moty defined by

Motm(N,N) = Motm(M ~ N,M\ N),
FN N o f: M N M N

Notice that generally these automorphism groups are not connected in the
motion groupoid - this would imply N homeomorphic to M\ N.
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ALTERNATIVE EQUIVALENCE
RELATIONS ON THE MOTION
GROUPOID
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Definition _ _ _ .
The worldline of a motion f: N~ N" in @ manifold M is

W(EN < N) = | f(N) x {t} cMxL.
te[0,1]

Let f,g: N = N" be motions with the same worldline, so we have
W(f:N <= N') =W(g:N <= N").

Then f:N <= N" and g:N - N" are motion equivalent.

Foralltel, (97" Ne(N) = g7 o ge(N) = N. Thus g~' - fis N-stationary, and
hence g = f path-homotopic to a stationary motion.,
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Let M = (M,A) where M is a manifold and A ¢ M a subset. Two motions

f.f'*N <= N"in Mty are motion equivalent if, and only if, their worldlines are
level preserving ambient isotopic, relative to (M x ({0,1})) u (A x1I), pointwise.
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Definition _
Fix a pair (M,A). Define a relation on Mtu(N, N") as follows. Let

f:N <N £ g:N < N if the motions f:N < N’ and g: N — N’ are relative
path-homotopic. This means there exists a continuous map

HSH X H — HM
such that

- forany fixed sel, t — H(t,s) is a motion from N to N’,
- forall tel, H(t,0) = f;, and
- foralltel, H(t,1) =g .

We call such a homotopy a relative path-homotopy.
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For a pair M = (M, A) and a motion f:N < N’ in M we have

[fiN A Nf]m - [fN = N,]m'

Direct construction of appropriate homotopies. Uses normality of stationary
motions.

Relative path equivalence is precisely the equivalence relation in the relative
fundamental group, hence

Motm(N,N) = m(Homeoy (2, @), Homeoy (N, N), idn)

We will need this later!
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Recall that for a pair M = (M,A) and for subsets N, N" ¢ M, morphisms in
Homeon(N,N") are triples denoted j:N ~ N" where fe Hy and j(N) = N". We
also think of the elements of Homeoyn (N, N’) as the projection to the first
coordinate of each triple i.e. f e Hy such that f(N) = N".

Definition : o
Let N,N" c M. For any f:N ~N"and g: N ~ N" in Homeoyn (N, N"), f:N ~N" is said

to be isotopic to g:N ~ N/, denoted by i, If there exists a continuous map

HMxIT - M

such that

- for all fixed s €I, the map m = H(m,s) is in Homeoy(N,N"),
- forallmeM, H(m,0) =f(m), and
- forall meM, H(m,1) = g(m).

We call such a map an isotopy from §:N ~N’ to g:N ~ N’
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The family of relations (Homeoy(N, N"), i) for all pairs N,N"c M are a
congruence on Homeopy.

Let M = (M,A) be a manifold submanifold pair. There is a groupoid

MCGpy = (PM, Homeoyn(N,N")/ LY lidu], [fl = [F7']).

We call this the mapping class eroupoid of M.
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Using bijection
¢: Top(I, TOP(M,M)) - Top(M x I, M),

a continuous map M x I — M which is an isotopy corresponds to a path
I - Homeoym(N.N") from § to g. Hence

Let M be a manifold. We have that as sets

MCGu(N,N") = mo(Homeom (N, N")).
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Example
If S'= (S, @), we have

MCGs (2, @) = Z/2Z.

Hs has two path-components, containing respectively the orientation
preserving and the orientation reversing homeomorphisms from S' to itself.
Each is homotopic to S' (Hamstrom). Therefore the homomorphism
mo(Homeos (@, @)) - {+1} = Z/2Z induced by the degree homomorphism
deg: Hg1 = Homeos (@, @) — {£1} IS an isomorphism.
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Let D2 = (D?,0D?). The morphism group MCGp: (@, @) is trivial.

(This follows from the Alexander trick.) Suppose we have §:@ ~ @ in D?. Define

tf(x/t) 0<x <t,

X t<|x| <.

fe(x) _{

Notice that fo = idp. and f; = f and each f; is continuous. Moreover:
H:D? x T — D?.
(x,t) = fe(x)

IS a continuous map. So we have constructed an isotopy from any boundary
preserving self-homeomorphism of D? to idp..
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FUNCTOR FROM THE MOTION
GROUPOID TO THE MAPPING CLASS
GROUPOID
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Let M = (M,A). There is a functor
F: Moty - MCGu

which is the identity on objects and on morphisms we have

F([ﬁN =t Nr]m) = [ffN a N’]r
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=

,__...----H@;lzeomm Wl
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The functor

F:‘\[(_)tﬂé M(‘GM

is full if and only if mo(Homeoyn (2, @).idy) is trivial.
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(Hatcher) Let X be a space, Y c X a subspace and xq € Y a basepoint. There is a
long exact sequence:

i) :n

o (Y, X0 }) = ma(X, {X0}) 2> (X, Y, {Xo})

a" i i

= TTn_q(Y. {Xo}) — e e Tfo(X. {Xg}).

Maps i and j are inclusions. Maps o are restrictions to single face, in
particular

6)1:TT1(X.A. {Xo}) = Tro(A. {Xo}).
[v}o = [v(D]-
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Recall Moty (N, N) = m(Homeou(@, @), Homeou (N, N).idy) and
MCGu(N. N) = mo(Homeoy (N, N).idy).

Let M = (M,A) be a manifold, subset pair, and fix a subset N ¢ M. Then we
have a long exact sequence

N

. i . Je
.. = mp(Homeoy (N, N),idy) — mp(Homeon (2, @), idy) —

‘ n—1
()ﬁ

mn(Homeon (2, @), Homeoy (N, N),idy) — mp-1(Homeoy (N, N),idy) —

1
?

. — m(Homeow (N, N),idy) bt m(Homeon (2, @), idw)

1 0

¥ Motm (N, N) 5 MCGu(N,N) =, mo(Homeon (@, @), idm)

where all maps are group maps and F is the appropriate restriction of the
functor F: Moty — MCGp.
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Suppose

- m(Homeon (2, @),idn) is trivial, and
+ mo(Homeow (@, @).idwm) is trivial.

Then there is a group isomorphism

F: Motu(N, N) = MCGu(N, N).
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Let M be a manifold. If

- m(Homeon (@, @),idwn) is trivial, and

+ mo(Homeoyn (@, @), idn) is trivial,

the functor
F:M(_)tM — M('GM.

IS an isomorphism of categories.
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Suppose m(Homeow (@, @), idy) and mo(Homeoyn (. @).idy) are trivial.
Already proved F is full. We check F is faithful. Let [f:N < N'], and [f:N ~= N'],
be in Motu(N,N"). If F([f:N = N'],) = F([f':N = N'],), then

[idy: N ~NJ = F(Dd:N - N,]m)_1 o F([f: N N,]M)
= F([f'*N - N’]_1 * [fiN = N'],)

m

= F([f +f:N <= N],).

By group isomorphism this is true if and only if
[}E’ % fi N N]m — [](lM:N NS N],n

which is equivalent to saying Idy = (f' * f) is path-equivalent to a stationary
motion, and hence that f7 * f is path-equivalent to the stationary motion
(since Idw * (F + ) £« f). So we have [f:N < N}, = [f:N < N'],.
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Let D" be the n-disk, and D" = (D", 9dD"). Then we have an isomorphism

F:)_[(_)to_n — M('Gp_n.
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Let D" be the n-disk, and D" = (D", dD"). Then we have an isomorphism

F:)_[(_)to_n — M('Gp_n.

We proved that MCGp: (@, @) = mo(Homeop: (@, ). idy) is trivial. Alexander
trick gives same result for all n. Also Homeop: (@, @) IS contractible
(Hamstrom).
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Suppose we don't fix the boundary. Let P, c D? be a subset consisting of two
points equidistant from the centre of the disk. Let 7 be the path in
TOP"(D2, D?) such that ¢ is a =t rotation of the disk.

The motion 7.: P, <« P, represents a non-trivial equivalence class in Motp.,
and its end point also represents a non trivial element of MCGp.. Now
consider the motion 7, * 7._: P, ~= Py,
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In fact, the map F: Motp. - MCGp: is neither full nor faithful. The space
Homeop. is homotopy equivalent to S'u S', where the first connected
component corresponds to orientation preserving homeomorphisms and the
second orientation reversing (Hamstrom). Hence we have that
m(Homeop: (&, @), idp:) = Z where the single generating element corresponds
to the 27 rotation. And mo(Homeop: (@, @),idp:) = Z/27Z. SO we have an exact

sequence:

.. > m(Homeop (N, N),idp: ) = Z — Mot (N, N) = MCGpe(N, N) - Z/2Z.
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Let P c S" be a subset containing a single point in S'. Similarly to the disk,
there is a non-trivial morphism in Mots: (P, P) represented by a 27 rotation of
the circle.
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Note that the connected component containing ids: of Homeos (P, P) IS
contractible, (Hamstrom). In particular m (Homeog (P, P).ids1) is trivial. We
also have that S'u S' is a strong deformation retract of Homeos (@, @), with
the first copy of S' corresponding to orientation preserving homeomorphisms
and the second to orientation reversing. Hence the sequence becomes

..—> {1} > Z - Mots1(P,P) - MCGg (P, P) — Z/27.

The exact sequence gives an injective map

7, = m(Homeos (@, @),ids1) - Motsi (P, P), sending n € Z to the equivalence
class of the flow tracing a 2n= rotation of the circle S'. The space
Homeos (P, P) only has two connected components, consisting of
orientations preserving and orientation reversing homeomorphisms of S’
fixing P. Hence the exact sequence becomes:

> {1} > Z 5 Mots (P, P) > MCGsi (P, P) 5 Z/2Z.
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