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OUTLINES AND PUNCHLINES 1/2

m Discuss ideas from formal deformation theory in QFT
» Familiar example is Ocneanu rigidity of fusion categories

m QFTs have “higher” multilinear k-ary operations (“brackets”)
(1)

> Control: deformations, (generalized) OPEs, and anomalies
> oo-algebras, factorization algebras, and operads

m Familiar to high energy physicists and mathematicians who
have studied twisted SQFTs (descent relations)

» Not limited to twisted scenarios

m Can go very far in the case of (mixed) Holomorphic and/or
Topological (HT) theories
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OUTLINES AND PUNCHLINES 2/2

. Reminder on beta-function and BRST-symmetry

. Introduce the eta-function and higher brackets
Example of computing the eta-function

. Generalizations to other scenarios

. Quick survey of some results in holomorphic-topological
scenarios

Three Punchlines

1. m-vector exists and is computable
2. m-vector contains anomalies, OPEs, and more
3. Non-renormalization theorem for HT theories
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DEFORMATIONS OF QFTs

m Given a QFT 7, it can be deformed by
turning on interactions

St + Zgi /Rd O (z)d%z  (2)

» ¢’ are coordinates on theory space
» Work perturbatively in couplings ¢°

m Defines a formal pointed neighbourhood D[ T] of 7,
consisting of all effective QFTs obtained by perturbative
deformation of T

» Pointed because there is a distinguished point, called 7.

» Formal because we only consider deformations in an
infinitesimal nbd of 7" (we are not at finite coupling).

» Think of formal/infinitesimal as synonym for “perturbative”
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THE BETA FUNCTION

m Generic QFT (point) is not scale invariant
» Scale transformation on 7 is traded for a change of the
couplings e.g. integrating out DoF modifies couplings

m We encode infinitesimal scale transformations in vector field
on theory space, the beta function

9
ﬁ:;(ﬁ(g)agi-

» Perturb around (typically free) scale-invariant theory, 3 = 0
» Deformations of 7" preserving scale invariance are zeroes of 3

m The coefficients 3%(g) are power series in g
B(g) = (d — Ay g* + O(g”) ()
\‘/—/
Classical

» Tune relevant terms to 0 and study 3 as a measure of scale
generated by “quantum effects”
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THE BV-BRST FORMALISM 1/2

m Quantization of non-abelian gauge theories is hard:
formulated redundantly in exchange for other properties

7 = / [DAD)Dip|e~SA4] = / [D®) e 5P (5)

> Introduce a gauge fixing procedure and Fadeev-Poppov
ghosts b and ¢

Z = /[D(I)DBAdbAd(ja]e‘S'[(I)]+3'B;1F/1[(I)]bA(j“(SﬂFA[(I)] (6)

m Gauge fixed action still has residual nilpotent odd global
symmetry involving fields and ghosts, called BRST symmetry.

OBRST® = —iec®0, P, 0BrsTBA =0,

: [/ o
OBRrsTC” = iﬁfélﬁycﬂcﬂ OBRSTbA = €By, (7)

» Physical theory can be identified with Qgrsr-cohomology
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THE BV-BRST FORMALISM 2/2

m Focus on theories defined in BV-BRST formalism:
» 7 is embedded in a bigger ambient theory T with ghosts,
anti-ghosts, anti-fields, etc.
» Grassmann odd nilpotent symmetry Qprst
> Observables in 7 are recovered from T by taking Qprst coho

Opst = (Ops7, @BRST)
Int7 = (Opsz[dz], d + QBRsT) (8)

m i.e. we will work in BV formalism
» Essential to quantizing p-form gauge theories, theories which
only close on-shell, field-dependent structure constants, or

theories with other complicated constraints
» Not restricted to such complicated theories either
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THE ETA FUNCTION

m Can compute analog of 3 for any type of transformation.
Ex. Non-relativistic scale transformations (¢, z) — (\*%, )

Ex. Anomalous axial transformation on # angle in gauge theory

m Consider T — (ATT QprsT) described in a BRST formalism in
terms of ambient 7T N
» To deform 7', we deform T without breaking BRST symmetry

> Consider deformations of 7' with Grassmann odd couplings,

non-trivial ghost number, etc. This is formal pointed
dg-supermanifold D[T].

m BRST symmetry will be encoded in a vector field
G,
n = ;W (9)8—g@- :

» Linear term tells us if adding an interaction Z
explicitly/classically violates BRST symmetry

» Higher order terms do so “quantum mechanically”
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HIGHER ALGEBRA

m Since ()? = 0, the eta function n? = 0.
» Wess-Zumino consistency condition for BRST symmetry

> Gves quadratic constraints on coefficient functions 5(g)

. 1 2. . .
n'(g) =) i > i gt g (10)

n>0 jl "'jr!

m Define the following multilinear operation Int®" — Int

(AT, T} = ?7517 PSR (11)

» The BRST variation belcomes ]
’I’]I:{I}+§{I,I}+§{I,I,I}+... (12)

The coefficients . ; and brackets {-,...,-}

2 _
=0 define an L. [1]-algebra structure on In.
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BASIC ETA-FUNCTION CALCULATION - GENERAL 1/2

m 7 is not just abstract fun, it is computable fun

m Correlation functions of 7" deformed by 7 are correlation
functions of 7" with additional insertions
am
(O1(@1) - On(3)) pyz = (Or(@r) -~ On(an)e? 72 T)  (13)
> At linear order, the BRST anomaly generated by Z; is just

[Qin] : (14)
Ru’

> Write |
Q. T =) _nlT;+dJ; (15)

J

m In perturbation theory, higher order terms
0(g") ~ [, Tw):++Z(wn) (16)
R(?L

» Need regularization to avoid UV divergences from colliding Z
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BASIC ETA-FUNCTION CALCULATION - GENERAL 2/2

m E.g. at O(¢?) we can regularize the deformation to

SO @) T(@) () (17)

m Now we can compute

@

o £ (21, 3) (1) (m)] |, (18)

- /dedf;(g)(ml, 2)(Z(21)T (22) + T (21)L(22)) (19)

m With a sharp cutoff (point-splitting) this becomes

(.2)w) S [ 2@)7@) + Te)TE@)  (eo)

.’I,‘12|=€

» Anomaly appears in point-splitting regularization because
total derivative terms give a boundary contribution.

10
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BASIC ETA-FUNCTION CALCULATION - CONCRETE 1/2

B 2d Syatier With G global symmetry and G gauge theory

1 v
St = —i/dQ-T F,u.uF” + SMatter

Ex. Free fermions with vector current J# = yy#t ).
> Study the interactionZ = 4, J*

m Add ghost and auxiliary fields 7 < (T, Q)
» BRST transformation of Z gives:

oBrsT(AuJ") = (eDyc)J* + A,(iege¥) = edycJ”

» See 7 is BRST-closed up to total derivative J = ¢J
» Term can potentially cause BRST anomaly
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BASIC ETA-FUNCTION CALCULATION - CONCRETE 2/2

m The two-bracket receives a contribution from the 2d .JJ OPE;:

D — / AJ:(x1) :ed:(xz2) + :cdi(x1) :AJ:(22)

|x12|=€

— ﬁ (;A(a:—l)c(:xg): e 26(1’1)14(372)1 ) (J(Tl)J(T2)>

1
Mo

= # cdd: (z). (23)

» We use JJ ~ lar:lz!_g, taylor expanded, and integrated by parts
» 4 denotes combinatorial and rep-theoretic factors

m Recover well-known 1-loop anomaly for G-gauge theory
{A,JH AT} = # cFia. (24)

» In 2k-dim, you recover anomaly from (& + 1)-ary bracket

12
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RECAP AND FURTHER CONNECTIONS

m Recap:
» Deformations are integral to our understanding of QFT

» Working in a BV-BRST formalism, we can introduce n that
tracks violation of BRST symmetry due to interactions

» 75 defines an L..-algebra on interactions and Maurer-Cartan
equation is solved by well-defined deformations

» 7 contains useful information like anomalies

m Descent operations in twisted theories
» Higher brackets appear by colliding/integrating descendants

» E.g. OPE and secondary product of cohomological TFTs is a
2-ary bracket

» [Bomans, Wu] compute higher-central charges (a and ¢) of 4d
SUSY gauge theories from brackets
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GENERALIZATIONS

m Can consider position dependent interactions: causes
momentum-inflow p* at each vertex

> L-brackets extended to ®;In ;) — Iny~

» Momentum-coloured operad
N e A p(2) -+ p(n=1) Al (25)

m Distinguished subcase: holomorphic theories with
holomorphic momentum X recovers A-brackets and higher
n-Lie or homotopy conformal algebras

m Auxiliary and defect systems: the brackets of T' x Tpobe
extract information about 7°

Ex. 't Hooft anomaly of Syp.iier IS @pparent in the non-trivial
bracket when coupled to G-gauge theory 7',

Ex. If T is topological QM, brackets of 7' recover Moyal
commutator. Brackets with an auxiliary fermion recovers full
Moyal-star product. 1d-topological defect brackets have A..

14
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HOLOMORPHIC-TOPOLOGICAL
THEORIES
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HOLOMORPHIC-TOPOLOGICAL THEORIES

m “Holomorphic-Topological” means ﬂat spacetime has
structure of C x R” with coords (2, z*, %)
» Anti-holomorphic translations in (CH and translations in R”
are gauge symmetries (Qgrsp-exact)

» Interested in theories with action
t/ (®,d ®) + Z(D)] dlz® . (26)
CcH xRT

> dis a “superfield,” and dz™ and dz" are “superspace
coordinates”

m Appears in holomorphic-topological twists of SUSY theories.
» Take cohomology of nilpotent supercharge Qsusy, i.e. “twist”

> Translations are Q-exact; (cohomologically) HT sub-theory
{Q, Qa} = 8se (27)

m Can be used to prove a general non-renormalization
theorem for theories with 7" > 2.

15
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HOLOMORPHIC-TOPOLOGICAL INTEGRALS

m In such theories, we will be interested in brackets of the form

{01 ool - On} (28)

m The Feynman integrals that contribute will take the form:

Ir(A;2) = /

J MITol—1

VFE Vs .
[H dVOlvc’\"w;} d H P (378({']) — Te(1) T Ze)

vel

m Let's count the form degree of the integrand:
> (Regulated) propagator P, isa (0,H + T — 1) form

» (H+ T)x (|I'y| — 1) integration variables: one for each vertex
of graph, and throw one vertex away by translation symmetry.

» (|I"y] — 1) regulated propagators and one (0, H + T')-form cut
propagator d P.(x)
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HOLOMORPHIC-TOPOLOGICAL FEYNMAN DIAGRAMS

m Non-vanishing Feynman diagrams are Laman graphs and
generalizations

JaNE SR Ay e

m Feynman diagrams and integrals satisfy infinite collections
of geometric identities relating to the configuration space of
almost-Laman graphs

» Feynman integrals satisfy infinite collection of quadratic
identities

» ldentities imply (higher)-associativity of the accompanying
brackets in a diagram-by-diagram way

» Can bootstrap all Feynman integrals from these identities?

m Can use these Laman graphs to prove a completely
combinatorial/diagrammatic proof of perturbative
non-renormalization of 7' > 2 theories.
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. Reviewed basic examples of deformations in QFT
(3-function)

. Introduced n-function; interactions have L. -algebra
structure, tracks violation of BRST symmetry by interactions

. m-function contains familiar data like anomaly data, and
briefly discussed the relation to twisted SQFTs

. Introduced holomorphic-topological theories, and showed

brackets are very strongly constrained (Laman graphs)
. Laman graphs prove associativity relations, and no
perturbative corrections when 7' > 2 topological directions.

Three Punchlines

1. m-vector exists and is computable
2. m-vector contains anomalies, OPEs, and more
3. Non-renormalization theorem for HT theories
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