Title: Bosonization and anomalies of 3d fermionic topological orders

Speakers: Arun Debray

Collection: Higher Categorical Tools for Quantum Phases of Matter

Date: March 22, 2024 - 10:45 AM

URL: https://pirsa.org/24030079

Abstract: here are two notions of a symmetry of a group G on a 3d topological order (TO): an "algebraic" symmetry, where G acts by automorphisms on the tensor category defining the (TO), and a "field-theoretic" symmetry, where the TFT corresponding to the TO is extended to manifolds with a principal G-bundle. The "field-theoretic" notion is stronger than the "algebraic" one, and the obstruction is sometimes referred to as the anomaly of the TO. The goal of this talk is to discuss a project joint with Weicheng Ye and Matthew Yu on computing these anomalies for fermionic TOs/spin TFTs: we develop a general framework employing Gaiotto-Kapustin's bosonic shadow construction. I will discuss both the mathematical conjectures our framework rests on as well as its use in examples. The Smith long exact sequence appears in our computations.

Pirsa: 24030079 Page 1/31

perimeter_3_22.pdf

Arun Debray — March 22, 2024

arXiv:2312.13341 joint with Weicheng Ye and Matthew Yu

Pirsa: 24030079 Page 2/31

Symmetries of 3d topological orders

- Many three-dimensional oriented topological field theories (3d TFTs) Z are described by the data of a modular tensor category (MTC) C
- Two kinds of symmetry by a group G:
 - "Algebraic": $G \to \operatorname{Aut}(\mathsf{C})$
 - "Field-theoretic": the TFT Z is promoted to a TFT of 3-manifolds equipped with a principal G-bundle
- These notions are **not equivalent**: a field-theoretic symmetry is stronger than an algebraic one
- The **anomaly** of an algebraic symmetry is the obstruction to promoting it to a field-theoretic symmetry

Pirsa: 24030079 Page 3/31

Symmetries of 3d topological orders

- Many three-dimensional oriented topological field theories (3d TFTs) Z are described by the data of a modular tensor category (MTC) C
- Two kinds of symmetry by a group G:
 - "Algebraic": $G \to \operatorname{Aut}(\mathsf{C})$
 - "Field-theoretic": the TFT Z is promoted to a TFT of 3-manifolds equipped with a principal G-bundle
- These notions are **not equivalent**: a field-theoretic symmetry is stronger than an algebraic one
- The **anomaly** of an algebraic symmetry is the obstruction to promoting it to a field-theoretic symmetry

Pirsa: 24030079 Page 4/31

Symmetries of 3d topological orders

- Many three-dimensional oriented topological field theories (3d TFTs) Z are described by the data of a modular tensor category (MTC) C
- Two kinds of symmetry by a group G:
 - "Algebraic": $G \to \operatorname{Aut}(\mathsf{C})$
 - "Field-theoretic": the TFT Z is promoted to a TFT of 3-manifolds equipped with a principal G-bundle
- These notions are **not equivalent**: a field-theoretic symmetry is stronger than an algebraic one
- The **anomaly** of an algebraic symmetry is the obstruction to promoting it to a field-theoretic symmetry

Pirsa: 24030079 Page 5/31

Anomalies as invertible field theories

- One way to think about (at least some) anomalies is as the data of an **invertible field theory** (IFT) in one dimension higher
- Freed-Hopkins show that this theory is determined by its partition functions, and that the partition functions are bordism invariants (see also Freed-Hopkins-Teleman, Yonekura, Rovi-Schoembauer, Kreck-Stolz-Teichner)
- Upshot: to calculate the anomaly of a G-action on an MTC, it suffices to calculate it on some small list of closed 4-manifolds
- These formulas for the anomaly on those manifolds are called **anomaly indicators**

Pirsa: 24030079 Page 6/31

What's new (and what isn't)

- Finding anomaly indicators for G-symmetries is settled, to an extent: for common choices of G, complete invariants for the anomaly of a G-action have been written down, and there are also tools to attack the problem for general G (Barkeshli-Bonderson-Cheng-Jian-Walker, Bulmash-Barkeshli, Barkeshli-Bonderson-Cheng-Wang, Wang-Levin, Lapa-Levin, Wang-Lin-Levin, Kobayashi-Barkeshli, Ye-Zou, . . .)
- Things are very different in the **fermionic TO** case, corresponding to **3d spin TFT**: the constructions one would want to use do not exist yet, and the bordism computations are harder.

 (Tata-Kobayashi-Bulmash-Barkeshli)

,

Pirsa: 24030079 Page 7/31

What's new (and what isn't)

- We study anomaly indicators for group actions on super MTCs
- Given a group action on a super MTC, we produce a 4d TFT which is an invariant of the group action as well as a procedure for evaluating the TFT on a 4-manifold given a Kirby diagram
- We provide a conjecture implying that our TFT is the anomaly of the group action
- We study this in several examples, showing our method agrees with prior work by other methods

Pirsa: 24030079 Page 8/31

The story in the bosonic case

- Pick a group G and a homomorphism $a: G \to \{\pm 1\}$
- ullet Have G act on a unitary MTC ${\sf C}$
 - If a(g) = 1, g acts unitarily on C
 - If a(g) = -1, g acts antiunitarily on C

The story in the bosonic case

- We would like to extend the TFT Z_{C} to manifolds with a (BG, a)-twisted orientation: a principal G-bundle $P \to M$ and an identification of a(P) with the orientation bundle of M
- The obstruction to doing so is a 4d invertible TFT $\alpha_{G,C}$; its partition function is a bordism invariant $\Omega_4^{SO}(BG,a) \to \mathbb{C}^{\times}$

Example: \mathbb{Z}_2^T

- Consider $G = \mathbb{Z}/2$ and a is the isomorphism, as studied by Wang-Levin, Barkeshli-Cheng, . . .
- A $(B\mathbb{Z}/2, a)$ -twisted orientation is the data of the orientation bundle, so no data at all
- $\Omega_4^{\rm O} \cong \mathbb{Z}/2 \oplus \mathbb{Z}/2$, generated by \mathbb{RP}^4 and \mathbb{CP}^2

$$\alpha(\mathbb{RP}^4) = \frac{1}{\mathcal{D}} \sum_{\text{anyons } b: \ \rho(b) = b} (\pm 1) \text{qdim}(b) e^{i\theta_b},$$

where $\rho \colon \mathbb{Z}/2 \to \operatorname{Aut}(\mathsf{C})$ is the action and the sign is essentially whether ρ acts on b as 1 or -1.

$$\alpha(\mathbb{CP}^2) = \frac{1}{\mathcal{D}} \sum_{\text{anyons } b} (\text{qdim}(b))^2 e^{i\theta_b}.$$

Where do these formulas come from?

- There are general procedures for building anomaly indicator formulas using **triangulations** (Crane-Yetter, Bulmash-Barkeshli) or **Kirby diagrams** (Ye-Zou) for the generating 4-manifolds
- Upshot: "less complicated" generators lead to tractable formulas
- Given (G, a), how complicated can generators be? In practice seems not too bad

Pirsa: 24030079 Page 12/31

What changes in the fermionic case

- We're interested in porting this story over to super
 MTCs: braided fusion categories with Müger center sVect
- If C is a super MTC, $\mathbb{Z}/2$ acts by " $(-1)^F$ ": tensoring with the odd line in sVect
- So a G-action on a super MTC comes with the data $a: G \to \mathbb{Z}/2$ from before, together with an extension $1 \to \mathbb{Z}/2 \to \widetilde{G} \to G \to 1$ expressing how the symmetries mix with $(-1)^F$
- This data is classified by $b \in H^2(BG; \mathbb{Z}/2)$. (G, a, b) is called a **fermionic group** (Benson, Stolz, Stehouwer)
- The spacetime structure corresponding to the fermionic group (G, a, b) is a (BG, a, b)-twisted spin structure: a principal bundle $P \to M$ and identifications $w_1(M) = a(P)$ and $w_2(M) + w_1^2(M) = b(P)$ (B.L. Wang)

Pirsa: 24030079 Page 13/31

Things are more difficult in the fermionic case

- If G = 1, look at $\Omega_4^{\text{Spin}} = \mathbb{Z}$, generated by the K3 surface and detected by the **A-roof genus** (aka index of the **Dirac operator**)
- The K3 surface has very complicated topology! Here's its Kirby diagram (source: Harer-Kas-Kirby)

• This is simply too complicated to turn into an anomaly indicator

Pirsa: 24030079 Page 14/31

Things are more difficult in the fermionic case

- A problem for more general (G, a, b): spin Crane-Yetter theory doesn't exist yet and it looks like it will be a significant undertaking
- This is needed in the bosonic case to construct the 4d invertible TFT α
- For a systematic approach, we must find a different way forward

Pirsa: 24030079 Page 15/31

- If the spin structure is the problem, maybe we can make it go away...
- This is made real with the **bosonic shadow** construction of Gaiotto-Kapustin
- We use a generalization due to Tata-Kobayashi-Bulmash-Barkeshli for twisted spin structures

Pirsa: 24030079 Page 16/31

- Let $F_{\rm Spin}$ be the 3d oriented TFT given by summing the trivial theory over spin structures, and $F_{\mathbb{Z}/2}$ be the analogous construction for $\mathbb{Z}/2$ -bundles
- There is an $(F_{\text{Spin}}, F_{\mathbb{Z}/2})$ -defect z_c : tensoring with z_c turns 2d spin theories (boundaries for F_{Spin}) to 2d SO $\times \mathbb{Z}/2$ theories (boundaries for F_{SO}) and vice versa
- Going from spin to SO $\times \mathbb{Z}/2$ is called **bosonization**, and backwards is **fermionization**
- Concretely, tensoring with z_c amounts to: stack your theory with the theory $\alpha(\Sigma, \mathfrak{s}, P) \mapsto \operatorname{Arf}(\mathfrak{s} + P)$ and sum over spin structures (or, going the other way, sum over $\mathbb{Z}/2$ -bundles)
- $z_c \otimes_{F_{\text{Spin}}} z_c$ and $z_c \otimes_{F_{\mathbb{Z}/2}} z_c$ are Euler theories, so nearly trivial: this means that bosonization and fermionization are essentially inverses

Pirsa: 24030079 Page 17/31

- In higher dimensions, this isn't quite possible, but Gaiotto-Kapustin modified it to make it work
- F_{Spin} is the same, but $F_{\mathbb{Z}/2}$ is replaced with a Dijkgraaf-Witten-type theory with fields classes $x \in H^{n-2}(-;\mathbb{Z}/2)$ and action $\int \operatorname{Sq}^2(x)$
- So bosonization and fermionization exchange spin theories with **anomalous** oriented theories
- These two operations are still essentially inverses
- Tata-Kobayashi-Bulmash-Barkeshli generalize this to (BG, a, b)-twisted spin TFTs \longleftrightarrow (Bg, a)-twisted orientated TFTs with a $\mathbb{Z}/2$ coh class as before and a specified anomaly
- Note: far from symmetric monoidal, no guarantee this preserves invertibility

- This suggests a heuristic approach to finding anomaly indicators:
- Begin with a 3d theory with a G-symmetry, and bosonize
- Calculate the anomaly TFT of the bosonized theory using prior work in the bosonic case
- Use Kirby diagrams at this stage to write down formulas on a set of generators!
- Fermionize the anomaly

Pirsa: 24030079 Page 19/31

- In higher dimensions, this isn't quite possible, but Gaiotto-Kapustin modified it to make it work
- F_{Spin} is the same, but $F_{\mathbb{Z}/2}$ is replaced with a Dijkgraaf-Witten-type theory with fields classes $x \in H^{n-2}(-;\mathbb{Z}/2)$ and action $\int \operatorname{Sq}^2(x)$
- So bosonization and fermionization exchange spin theories with **anomalous** oriented theories
- These two operations are still essentially inverses
- Tata-Kobayashi-Bulmash-Barkeshli generalize this to (BG, a, b)-twisted spin TFTs \longleftrightarrow (Bg, a)-twisted orientated TFTs with a $\mathbb{Z}/2$ coh class as before and a specified anomaly
- Note: far from symmetric monoidal, no guarantee this preserves invertibility

What we did

First, the part that is settled:

Theorem (D.-Ye-Yu '23)

- The construction sketched above, given a super MTC C and a fermionic group (G, a, b) acting on it, produces a 4d TFT α on (BG, a, b)-twisted spin manifolds
- Partition functions can be computed from a Kirby diagram and a small amount of extra data representing the twisted spin structure

Pirsa: 24030079 Page 21/31

What we did

Next, the part that is still conjecture:

- Is α invertible? Bosonization/fermionization are not symmetric monoidal and do not preserve invertibility
- Does α even have anything to do with the anomaly?
- We provide a conjecture which implies these two; roughly, it says that the bosonization of the anomaly is the anomaly of the bosonization

Pirsa: 24030079 Page 22/31

Evidence for the conjecture

- Reproduces formulas obtained in work of Lapa-Levin, Kobayashi-Barkeshli, and Ning-Mao-Li-Wang for G the tenfold way fermionic groups of Freed-Hopkins
- New calculations ($\mathbb{Z}/4$, $a \neq 0$, b = 0) match computations by Delmastro-Gomis
- Calculations agree with those obtained by the **anomaly** cascade method of Bulmash-Barkeshli

Pirsa: 24030079 Page 23/31

The $\mathbb{Z}/4$ example

- Setting: $\mathbb{Z}/4$ does not mix with $(-1)^F$; the generator acts antiunitarily. Examples of this symmetry on super MTCs studied by Delmastro-Gomis
- The spacetime symmetry type $(B\mathbb{Z}/4, a, 0)$ -twisted spin structure is called **epin structure** by Wan-Wang-Zheng
- $\Omega_4^{\rm EPin}$ has been studied here and there since 1997 (Botvinnik-Gilkey, Barrera-Yanez, Wan-Wang-Zheng) but its structure was an open question
 - Botvinnik-Gilkey: Ω_4^{EPin} is $\mathbb{Z}/4$ or $\mathbb{Z}/2 \times \mathbb{Z}/2$, and the Adams spectral sequence doesn't disambiguate between these options
 - Barrera-Yanez: eta invariants also don't disambiguate
 - The Atiyah-Hirzebruch spectral sequence also doesn't help

Pirsa: 24030079 Page 24/31

Pirsa: 24030079 Page 25/31

Does $\mathbb{Z}/4$ **vs** $\mathbb{Z}/2 \times \mathbb{Z}/2$ **matter?**

- You can look for a set of generators without knowing the exact isomorphism type of the group. However...
- Botvinnik-Gilkey's argument implies: $\Omega_4^{\text{EPin}} = \mathbb{Z}/2 \times \mathbb{Z}/2$ if and only if one of the generators is a K3 surface
- So we really hope to get $\mathbb{Z}/4$; otherwise a complete set of anomaly indicators would be intractable!

Good news!

Theorem (D.-Ye-Yu '23)

 $\Omega_4^{\mathrm{EPin}} \cong \mathbb{Z}/4$. We may take as a generator a Klein bottle bundle \mathcal{M} over S^2

How to define \mathcal{M} :

- KB is the quotient of \mathbb{C} by the group generated by $z \mapsto \overline{z} + 1/2$ and $z \mapsto z + i$
- The \mathbb{R} -action $z \mapsto z + t$ on \mathbb{C} descends to an \mathbb{R}/\mathbb{Z} -action on the Klein bottle
- $\mathcal{M} := S^3 \times_{S^1} KB \to S^2$
- Twisted spin structure essentially induced from Klein bottle

Pirsa: 24030079 Page 27/31

Smith long exact sequence

- For determining both $\mathbb{Z}/4$ and the generator, we used the **Smith long exact sequence** of bordism groups (D.-Devalapurkar-Krulewski-Liu-Pacheco-Tallaj-Thorngren)
- Unrelated(?) to physics applications motivating that project, we used the LES to pass information from simpler symmetry types to EPin
- Interesting note: for $\mathbb{Z}/2^k$, k > 2, the same extension problem arises, but the bordism group is $\mathbb{Z}/2 \oplus \mathbb{Z}/2$

Pirsa: 24030079 Page 28/31

Pirsa: 24030079 Page 29/31

Evaluating the anomaly indicator

- Plug the super MTC data into the formulas:
- The $\mathbb{Z}/4$ -action on U(1)₅ has trivial anomaly
- On $U(1)_2 \times U(1)_{-1}$, the anomaly is $2 \in \mathbb{Z}/4$
- On SO(3)₃, the anomaly is $3 \in \mathbb{Z}/4$

Pirsa: 24030079

Page 30/31

Things are more difficult in the fermionic case

- If G = 1, look at $\Omega_4^{\text{Spin}} = \mathbb{Z}$, generated by the K3 surface and detected by the **A-roof genus** (aka index of the **Dirac operator**)
- The K3 surface has very complicated topology! Here's its Kirby diagram (source: Harer-Kas-Kirby)

• This is simply too complicated to turn into an anomaly indicator

Pirsa: 24030079 Page 31/31