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Abstract: Historically, the synergy between physics and geometry, from the times of Archimedes and Newton to the era of Einstein, has repeatedly
been the catalyst for pivotal breakthroughs in physics and mathematics. In thistalk, | will introduce a new narrative demonstrating how physics and
geometry intertwine, leading to unexpected and significant results in critical phenomena in physics. Specifically, | will elucidate how
non-commutative geometry--a mathematical framework born from the insights of physicists--offers fresh perspectives on conformal field theory, a
subject with profound applications across various physics domains, from condensed matter to quantum gravity, and string theory.
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Physics meets Geometry

In the history of science, the interplay between physics and
geometry has led to lots of profound work in both fields.
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Outline

x

* Physics: Critical phenomena and conformal field theory
+ Geometry: non-commutative geometry and fuzzy sphere

- Physics meets geometry: fuzzy sphere regularization of 3D CFTs
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Critical phenomena

Liquid-gas transition
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Ising model
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Characteristic features of critical phenomena

- Diverging physical quantities.

Power-law correlation functions.

Infinitely correlated, sensitive to small perturbations.
S

Scale invariance.

Cy ~ |T — T:C|_Od

0.5 1.0 1:5

T/T.
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Universality

- Critical points are characterized by a set of universal numbers
(critical exponents), e.g.

Clypreen |iF — T~ £~ |T =T,

» Ceritical points in seemingly unrelated systems can belong to
the same universality with the exactly same properties.

Same critical exponents! ﬁ “ ++ 4:*
Ty iqv by
EA a = 0.11008(1) 4 H#**“*H“
§ Solid - | Liquid / 2/0.629971(4)\ ———
@
- Critical
int
poin . .
Pt
> S= [ (@@ o)) | ity
Temperature A +++ ﬂ
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Critical phenomena are everywhere

Stock market Flocks of birds Critical brain hypothesis

Social network
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Critical phenomena in modern physics

* The study of critical phenomena gives birth to a number of fundamentally
important physics concepts/theories:

A. Universality.
B. Renormalization group.

C. Conformal field theory (CFT).

Conformal transformation
(angle preserving transformation)

B
>

xt — g2t
1—2b- 2+ b2x2

xt —

: discovered the 2D Ising transition has an emergent conformal
symmetry, and conjectured it is also true for the 3D Ising transition.
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Conformal field theories (CFTs)

Statistical mechanics Quantum matter
Example: g solid Liquid Example:
Ising model, £ Quantum criticality,
quuid_-gas gapless spin liquid
transition
Temperatu’re
Quantum gravity, String theory Quantum field theory
RG fixed points of QFTs
Example: PRI
AdS/CFT UV CFT ¢

UV CFT a

- IR CFT
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CFTs are strongly interacting

* Many 2D CFTs are exactly solvable.

3

* 3D and higher dimensional CFTs are not well understood:

|. Perturbative RG computation.
2. Lattice model simulations (mostly Monte Carlo).

3. Conformal bootstrap.
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Outstanding challenges

* Do phase transitions generically have emergent conformal
symmetry!?

* What is the nature of each CFT?
* What is the landscape of CFTs?

+ New type of critical phenomenon and CFT in nature?

We need powerful non-perturbative tools!

This talk: a condensed matter approach—study strongly interaction models.
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Leveraging conformal symmetry

Study CFTs (e.g. Ising) on a conformally flat manifold R?, S9! x R, S9.

. . . L3
Radial quantization (state-operator correspondence)

Rd Sd,—l xR
T
gd—1 r 1 AT
! Weyl transformation
< >
T =logr ey

Sd—l
—3( >

Eigenstates of the quantum Hamiltonian defined on S¢~! are
in one-to-one correspondence with CFT’s scaling operators.

Energy gaps~scaling dimensions: 6F,, = E, — Ey = 54,
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Radial quantization on a lattice

2D CFT:We can just study a quantum Hamiltonian on a circle.

Most conformal data can be extracted. |

3D CFT:We need to put a quantum Hamiltonian on a two-sphere.
But a regular lattice won't fit since two-sphere has a curvature...

$==1
A }5 NN
/N \ L
LAE L AT
‘«-'\ U v \
4 o e
t\_ ':; \\ \;y/
N\ i’ — Jﬁ
L e
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Our recipe: make it fuzzy!

Sphere is a curved space.

B A

Fuzzify

Lowest Landau
level projection

Discretize

Spherical tiling fuzzy (non-commutative) sphere

Spherical rotation
is broken badly.

Spherical rotation
is kept exactly.
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Even 4 spins work!!!

Gaps of ALL the excited states of the system with N=4 spins.
Bootstrap data from

CB 4 spins Errors
CB 4 spins Errors

,, ‘ o7,
. 0518 0530  2.3% ‘ 3 L5082
, 15 Lemr 049 i 2413 2337  3.1%
Llo- . . . )
; ) s 3 3 NA
[l 9518 2427  3.6%
Oy, Opus€ 3.413  3.126  8.4%
0,000 2518 2428  3.6%
e 3413 3577  4.8%

O, 0pyOus0 3518 2.847  20%
8,00 3518 3.291  6.5%
Oppy 4180 4241 1.5%

Oppaps 4638 4.618  0.4%

5 4 3.663 8.4%
€1 pr 00Ty 1 4 4.054 1.4%
e 3.830 4.019 4.9%

D5 0pis Lot 5 4.856 2.9%

» 6 primaries and | | descendants in the fuzzy sphere model with 4 spins!!

In the lattice Ising model, only 3 primaries were identified even if millions of
spins are simulated!
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Welcome to the era of fuzzy sphere!!

Simulating 3D (2+1D) CFT? Easier than ever!

Lattice model simulation

1000~100,000 spins

Millions of CPU hours

Very limited information

No access to conformal symmetry

Fuzzy sphere

4~20 spins
30 mins on a laptop

Almost everything

Fingerprint of conformal symmetry
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Outline

* Physics: Critical phenomena and conformal field theory
- Geometry: non-commutative geometry and fuzzy sphere

- Physics meets geometry: fuzzy sphere regularization of 3D CFTs
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Non-commutative geometry
[m’iapj] — iﬂ-dij |:> [gj’iﬂxj] — @913 m

non-commutativity non-commutativity
i ) P —
in phase space in real space

Heisenberg’s original idea in 1930s: to cure the
infamous UV divergence in quantum field theory

A PhD
project

1947

& A letter to

1930

Heisenberg Peierls Pauli Oppenheimer

Mathematical foundation was developed §
by Connes during 1970s-1980s.
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Why non-commutative geometry helps?

|+L>| UV finite

Lattice regularization :
Discrete space

Conti 0 (no continuous space symmetry)
ontinuum: a

Hard to fit curved space

Fuzzy regularization Uncertainty principle => UV finite

No rigid lattice —>Continuous space

[z, y] = ia® ,
N 5 Fits curved space: e.g. sphere
Az -Ay>a”/2 5
Fuzzy two-sphere: [l’i, ;Cj} = 1€k Tk, Z x;x; = const -1
i=1
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Non-locality and UV-IR mixing

Non-commutative field theory: S = fTr L(p(Z))

Review article

The making and breaking of non-commutative geometry:

&, 9] = ia
No sharp sense of position
Continuous space Non-locality
Amenable to curved space UV-IR mixing

The idea of fuzzy regularization was not successful as far as QFT is concerned.
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Non-commutative field theory in physics

Review article

* Non-commutative Yang-Mills theory, Standard model.

- String theory, D-branes, M-theory.

» Quantum gravity.

« Solitons and instantons.
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A Renaissance for the fuzzy regularization

An inspiration from the condensed matter physics—Quantum Hall effect.

: Vi
Magnetic B
Field el
+ —_— -
4 -
+ —_ \\\\
Magnetic :‘.‘ue— / %
on the Electrons I anary
Current

Quantum Hall physics is related to the

B 127h

Pry —
Y ov e2 ,_,

R S
—
R —
—1

non-commutative geometry.
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Landau level and non-commutative geometry

Particles moving in a strong magnetic field leads to non-commutative geometry!

_ M o oz b1 Q
L 25 S QO Q Q
A@Z:_gei.ﬂ?j Q O O O Q

Landau level: single particle states in the presence of magnetic field.

* Quantized energy: F,, = %(n +1/2)

+ Complete flat.
n=166066666°0
; BA
* Massive degeneracy at each level: B n =0 066669
m
Restrict/Project to the lowest Landau level:
. - B . o i
Lo=—-T - A= Eeijx"’mj =5 o 2’| = EEU
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Fuzzy sphere and spherical Landau levels

Electrons move -+ Quantized Landau level (LL) n=0, [, 2,...

under a monopole. . The states (orbitals) in each LL form a spin-(n+s) SO(3) rep.

» The wavefunctions of each LL are monopole Harmonics.

LOWEStLL m:_85_8+1,--- ,8
. 9 9
}/‘E’(?L(H’ QO) = Ns,'mezmtp COSS+m <§> sin®~ "™ (5)

On the lowest LL the coordinates become:

(X mg = /'dw@m)?@ QYL (Q)

5,11 $,mM2

1

3
[X@XJ] = ‘—ifijk;Xk; z:){ﬁ,,)(Z = 5
=1 3

s+1

S losiq

Fuzzy two-sphere: [%;, ;| = i€ijk Tk, E x;r; = const - 1
i=1
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Outline

* Physics: Critical phenomena and conformal field theory
+ Geometry: non-commutative geometry and fuzzy sphere

* Physics meets geometry: fuzzy sphere regularization of 3D CFTs
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Recap

Physical motivation:

- A UV finite Realization of 3D (2+1D) CFTs on the S? x R geometry.

 Curved sphere motivates fuzzy sphere, i.e. non-commutative geometry.

Geometric perspective:

* Non-commutative field theory—QFT on non-commutative geometry
has been pursued since 1930s-1940s.

@ Non-commutative field theory has novel non-locality, UV-IR mixing.

+ Lowest Landau level physics relates to non-commutative geometry.
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Fuzzy sphere regularization of 3D CFTs

Quantum mechanical model realizations of 2+ 1D CFTs.

Spin-1/2 T>> o (1 0 ) o (0 1)
L on each site ( ) 0 -1 1 0
attice ° 5 s -
model H:—Z%%—hzﬁ
(i7) i
Spins point to +z or -z Spins point to +x

- h
TTS241D Ising CFT

Particles moving on sphere in the presence of a monopole.

-
F - L Ne
sphere 2m ;(p (Z3)) 7;32::1 ( i)
meidet Kinetic term Interaction term

=~ + The model is local if interactions are local.
« 2+1D CFTs can be realized by tuning the interaction form.
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Fuzzy sphere model for the 2+1D Ising CFT

1 ' A 5 2
= / AT (D)0, + 14,)2(Q) + Hine
_*Ht = — / dQ,dQ U (Qy, Q)0 (Qa)n* () — h ] dQn® ()
NES /\”\ Non-relativistic fermions 7" (£2) = (WF( (://“} EQD
=" with an isospin.
U4, ) = go 5(Qa,b) + g1 V26(Qap)
Lowest Landau level projection
Landau levels
(s) im s+m 0 s S—m 0
: Y5 (0,0) = Ngme'™? cos 5 ) sin .
pm— 2 ‘ — 5 =
NGRS bal@® = Y e YEUD)
n=160-606-069 s

Igap>>Hmt
n=0e—e———-0
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Lattice model versus fuzzy sphere model

Lattice model Fuzzy sphere model

Hilbert space Each site 4 Each orbital |U>,CT\0>,CT]O>,(:$CUO)

two states ' '’ four states T +
Order phase lﬂ\ﬂi and H| $)i CinHO) and | | CLLJ,‘O>
- m—=—3:s -'— er:—S
A 7 + 1 ° Cm it Cm
Disorder phase —[ 1) \/ﬁ! 2 H T\/§ = 0)

m—=—s

Hamiltonian H =—) 070f —h) of 7= & fmermmnlommen L dre
)

e—

! LNV {de _ 9 & 8 25 ! & s 2 {0

.. Vi iz s llf\‘ (0.2l (m_ e my o omn ) \mg omy Wy M
(24) |
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A closer look at the fuzzy sphere model

R
-~
2s 4+ 1-site fermionic model O ® ® O O o 0O m——
2541 %25
Many-body T a0 m; =—8,—s+1,---,8 -y
Hilbert space -~ i spin-s rep of SO(3) R
e

Continuum limit: s — o0

Hamiltonian for the 2+1D Ising model Cjn = (CL,Ta CL,Q
H=— Z V?’??»lg'mz,mz—m,-mrf-m (Cinlgzcml—f-m) (cingo-zcm2—m) —h Z Cjngmcm
anl.?’lflz.'ﬁb'g,ﬂtg = Z W (48 - 2l —I_ 1) ( > > 28 B l ) ( > N 28 - l )
Rt 7 my Mo —MMq — Mo mg MMy —Tg — My
1 1 1
Uz —x;) = god(xi — x;) +.Q1V25($?: —xj) & Vo= 590 - 191; Vi = 191
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State-operator correspondence

Eigenstates of the quantum Hamiltonian.

Radial quantization

of d-dimensional CFT One-to-one correspondence

Sl R
— 0Bn = En = Eo = An
Scaling operators in the CFT.
e = 0ij
O@' x1)O0;(x =
e < ( 1) 3( 2)) |1171 _$2|QA
[ Primaries and descendants

Quantum Hamiltonian on S =1 ~onformal © — 9,,0—0,,,0,,0 - -
multiplet A A+1 A+2
There are infinite number of primary operators in any 3D CFT!

3D A, ~0.5184189(10) A, ~ 1.412625(10) A ~ 3.82968(23)
Ising =248z —1 v=1/(3—A,) w=A,—3
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State-operator correspondence

* We identified |5 primary operators, the numerical errors of all
primaries are within 1.6%.

* We looked at 70 lowest lying states with L<5, all of them match
theoretical expectations with small errors~3%.

CB 16 spins Error CB 16 spins  Error

o 0.518 0.524 1.2% € 1.413 1.414 0.07%

o 5901 5303 0.9% ¢ 3830  3.838  0.2%

Coine 4180 4214 0.8% ¢ 6.896  6.908  0.2%
ol . 6987  T048  0.9% Ty 3 3 -

!
Opypons 4638 4.609  0.6% T, 2222 iiii 12?
6.113 6.069 0.7% Cputprapus . . 6%

O- ‘o)
[ 2 3 Ha ¢/ 6.421 6.347 1.2%

ot~ NA  11.19 — L
ef'~ <112  10.01 —

Bootstrap data from
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State-operator correspondence

descendents: 9, ---0,,L1"0O, n,7 >0 (A+2n+j,7j)

o multiplet 16 electrons e multiplet
o | 77 o =
o
6 o
.- - S s -
X -o- -0- O o
4 —
-0 - N -o-
3 _
- o
2 —
o o
1 —
| | | — 0— | | I |
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Four-point correlator

1.846 + 0.171 cos § 4 0.152 cos® 6

We get a continuous function! 10.109cos® 6 + 0.109cos* @ + . ..
—— — ——

n*(0 = 0) 1 N —1g
P n*(0) = — N=2
I 6 — N=32
b N =40
=\
. | S 4f Y
Q(Z _ 629, 7 — 6—16‘) tg - \ /
(o]n?(8 = 0)n*(8)|o) ot S~—
(o|n?(68 = 0)|0)2 00 02 04 06 08
0.06% difference!! /2w

Bootstrap N =40 N=32 N=24 N =16
0=m 1.76855 1.76742 1.76671 1.76549 1.76244
0=mn/3 2.049 2.03921 2.03495 2.02470 2.01212
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Conformal defect

.--Linedefeet ... (b) $2x R
. ‘.“.' 0 |"
D=0 h | d°rO(r " |
crT + (1) v _ N
‘Wely transformation e
p=I:Line defect; p=2: Plane defect p=Lilar ) £ =0
| I o | 3
[-r |
. i} A
() L,=0 (b) L=1
s sl ooovy SEesEy oXov
5 ooy 5
. AoO g
Results of magnetic 4 A oBEy o 4foonv— - oy
. . 4r 4
line defect of 3D Ising k)
9 - feite)nhod
3 3t o%ov 3 16 3—oenv 3
oIy O v 20
24
2 2 2 - 28 2 A== 2
S -
1 1 R 1 1
m d" ¢H D l,lrf
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A lot to explore in this fuzzy world

Direction |
A numerical tool to solve open problems of CFTs/QFTs:

» Critical gauge theories: QED3, QCD3, Chern-Simons
matter theories, etc.

« 2+|D CFT at finite temperature, Cardy formula
+ Conformal defect

* Non-equilibrium dynamics, quantum chaos

« Complex fixed point, complex CFT

* Landscape of CFTs, new CFTs

Direction Il

Unreasonable effectiveness of mathematics (fuzzy geometry):
* Regulating QFTs using non-commutative geometry?!
* Exact solution or hidden structure of 3D CFTs?!
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Summary
Thank you!

* Critical phenomenon, particularly CFT, is a cornerstone in physics and it
also presents outstanding challenges and opportunities in modern physics.

* Leveraging non-commutative geometry and quantum Hall physics, we

propose a non-perturbative scheme called fuzzy sphere regularization for
studying 3D CFTs.

* Fuzzy sphere regularization demonstrates unreasonable effectiveness for
studying 3D CFTs, implying a deep connection between CFT, QFT and
non-commutative geometry.

Let’s explore the fuzzy world!
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