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9.4 Quantum Logic

Now that we played with classical gates, let us move on to quantum ones.

9.4.1 Single qubit gates

We consider single qubits in the basis:

o=(y), m=(3)- (114)

Then, an arbitrary state can be expressed as:

)= alo)+ ) = (5) (115)

Pauli gates The Pauli gates (X,Y,Z) correspond to the three Pauli matrices
G, 0y, 0, acting on single qubits.

. (001 . (0 -\ . (1 0
O’m—(l 0) 09_(3' 0) O'z—(o _1) (116)

and are represented in circuits as shown in figure 3| Notice that the X gate,
is a NOT gate in the sense that it flips the components of the vector state.

— X Y Z —
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Pauli gates The Pauli gates (X,Y,Z) correspond to the three Pauli matrices
G, 0y, 0, acting on single qubits.

. (o 1y . (0 =i\ . (1 0
"I(l 0) ”y(z‘ 0) "z(o —1) (116)

and are represented in circuits as shown in figure 3. Notice that the X gate,
is a NOT gate in the sense that it flips the components of the vector state.

Oy Gy G,

Figure 3: Pauli gates

Hadamard Another elementary gate is the Hadamard gate. The correspond-
ing operator is:

Figure 4: Hadamard gate
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Phase rotation gate Phase rotation gate acts by adding a phase to the
second component. The operator for the phase rotation is:

Figure 5: Phase Rotation gate.

- 1 0
R, Ry = (0 eif?) (120)

9.4.2 Classical bits and measurements

Measurements in the computational basis are represented as shown in figure
6. The double line corresponds to a classical bit, in this case it is storing the
measurement outcome. In the qubit after the measurement is discontinued, this
means that the measurement is destructive.

S S

Figure 6: Measurement representation in quantum circuits.
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9.4.2 Classical bits and measurements

Measurements in the computational basis are represented as shown in figure
6. The double line corresponds to a classical bit, in this case it is storing the
measurement outcome. In the qubit after the measurement is discontinued, this
means that the measurement is destructive.

S S —

Figure 6: Measurement representation in quantum circuits.

Classically-controlled NOT A classically-controlled NOT is a quantum
NOT gate, i.e. a X-Pauli gate, that is controlled by a classical bit (see fig-
ure |7D So the classical information controls the quantum operation.

X

Figure 7: Classically-controlled NOT gate.
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0={p), W=(;). (114)

Then, an arbitrary state can be expressed as:

) = al0)+ 81 = () (115)

Pauli gates The Pauli gates (X,Y,Z) correspond to the three Pauli matrices A
Gz, 0y, 0, acting on single qubits.

. {01y . (0o =\ . (1 o0
"‘”_(1 0) "y_(z' 0) Jz_(O —1) ({ie)

and are represented in circuits as shown in figure 3. Notice that the X gate,
is a NOT gate in the sense that it flips the components of the vector state.

Figure 3: Pauli gates

Hadamard Another elementary gate is the Hadamard gate. The correspond-
ing operator is:
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9.4.2 Classical bits and measurements

Measurements in the computational basis are represented as shown in figure
6. The double line corresponds to a classical bit, in this case it is storing the
measurement outcome. In the qubit after the measurement is discontinued, this
means that the measurement is destructive.

— o —x

Figure 6: Measurement representation in quantum circuits.

Classically-controlled NOT A classically-controlled NOT is a quantum
NOT gate, i.e. a X-Pauli gate, that is controlled by a classical bit (see fig-
ure |7D So the classical information controls the quantum operation.

X

|

Figure 7: Classically-controlled NOT gate.
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9.4.3 Two qubit gates

For two qubits we work in a basis where:

1 0

0 1

0 —smeo=[2]  oy-oen=|;

0 0

(0 0

0 0

w-me=[2 momen=|J

\0 1

CNOT The CNOT gate is a two qubit gate that maps:
CNOT |a, b) — |a, a ® b). (121)

Acting with CNOT on the basis vectors yields:

00) — [00)  [01) — |01)
110) — [11)  |11) — |10)

and is represented in circuits as shown in the following figure.

@& 0007@: sOBNBHLUEE

Pirsa: 24030060 Page 8/24



@ Preview File Edit View Go Tools Window Help 3 O @ zoom & & B N Q 8 FriMar22 913aM

® & M~ rl';‘asgla_dﬂ;:rggm_lnfurmation_Nntes—1.pdf @ e\ ®\ m £ = E‘I\ @ = Q-
0 0
0 0
10) = 1) ®0) = | | M =nHen=1,
0 1
CNOT The CNOT gate is a two qubit gate that maps:
CNOT |a, b) — |a, a & b). (121) )

Acting with CNOT on the basis vectors yields:

100y — [00)  01) — [01)
110) — [11)  |11) — |10)

and is represented in circuits as shown in the following figure.

Figure 8: CNOT gate

In the chosen basis, the matrix representation of the CNOT gate is the
following operator:

(1, 0
CNOT = (0 Jx) (122)

TOFFOLI The quantum version of the TOFFOLFI_JI gate acts again as a

0‘“.'}‘ Wgu?. - @ - 5 & @008 .W
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Figure 9: TOFFOLI gate

SWAP The SWAP gate swaps the elements of the vector states.

a= (‘;i) b= (‘;i) (125)
o= ()= ) S

In circuits we represent the SWAP gate as in figure 10,

Figure 10: SWAP gate

while the corresponding matrix operator is:

SWAP = (127)

oo o -
Q= oo
[em R e B e
—_ o o o

The “control” qubit in the quantum case. In the classical case, it is

.
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se, it is
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quantum case too? Let’s take for example the circuit in figure If we apply
a Hadamard gate in all qubits and change basis for the qubits, we can show
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CNOT |a, b} — |a, a & b). (121)
Acting with CNOT on the basis vectors yields:

00) = [00)  |01) — |01}
110) - |11)  |11) — [10)

and is represented in circuits as shown in the following figure.

Figure 8 CNOT gate

In the chosen basis, the matrix representation of the CNOT gate is the
following operator:

(1, 0©
CNOT = (0 Jw) (122)

TOFFOLI The quantum version of the TOFFOLLI gate acts again as a
doubly-controlled not.

TOFFOLI|a, b, ¢) — |a, b, c® a - b) (123)

The matrix representation of the TOFFOLI gate is 4}

-
=
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