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This is just a choice and it is not unique!

2.2 Postulates of QM

Let H be the Hilbert space associated with a quantum mechanical physical

systern.

o Postulate 1: To cach physical state corresponds a unique state operator,
called the density operator, which has to satisfy:

I. Positivity (@|ply) = 0 for |4y € H (all cigenvalues are positive
semi-definite).

2. Trace normalisation: Tr(p) = 3 (ei|ple;) = 1, where {|e;)} is an
orthonormal basis of H

3. It is self-adjoint. 5t = p

e [Postulate 2: Physical observables (in principle measurable properties of
the system) are represented by (possibly unbounded) self-adjoint operators
on the Hilbert space H. The result of a measurement of an observable that
produces a definite value will always be in the spectrum of the operator
that represented it.

e [ostulate 3: (Borns Rule) The probability of measuring an outcome a

i
when measuring the observable represented by the self-adjoint operator A
(o)), where Ala;) = a,]a;), therefore:

on a state g is given by: 1r(p |a;
(A) ="Tr(pA)
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2.3 The density matrix

There is a difference between classical probabilistic systems and quantum sys-
tems: in the classical case the probabilistic nature exists because we do not have
access to the microstates, but in the quantum case even if we know the micro-
scopic states we may not be certain about the outcome of a measurement of an
observable. Nevertheless, in quantum systems we may have classical ignorance
of what exact state we have, of course on top of the intrinsic probabilistic nature
of the predictions of outcomes of measurements.

Our knowledge about the state of a gquantum system is described by the
density matrix p. We can always think of the density matrix as a classical
probability distribution over “pure states”™ One way to see this is to recall the

fact that the density matrix is always diagonalisable in some basis:
p= S i lenied, (15)
pa—
where

N =1p > 0= Te(p) = 1. (16)

The set {|e;)} is an orthonormal basis of the Hilbert space H, i.e. Y |e;) (e =

Notice an importan point: the interpretation of p as probability distribution

over states 1s not unigue:
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observable. Nevertheless, in quantum systems we may have classical ignorance
of what exact state we have, of course on top of the intrinsic probabilistic nature
of the predictions of outcomes of measurements.

Our knowledge about the state of a quantum system is described by the
density matrix g. We can always think of the density matrix as a classical
probability distribution over “pure states”. One way to see this is to recall the
fact that the density matrix is always diagonalisable in some basis:

p=> pileel, (15)
|
where
S pi=1p: > 0= Tr(p) = 1. (16)
The set {|e;)} 1s an orthonormal basis of the Hilbert space H, i.e. Y, e, = 1.

Notice an importan point: the interpretation of o as ])!u]mhl]ll\ t]l\hﬂ)mltm
over states is not unique:

Example 2.1. A system of one qubit be in state that 1s a probability distribution
of the states |0y and |1). thus the densily matrix is:

L, .., 3 :
p= _||U:H:"”‘ i _| lf('l| . (17)
We want to show that we can rewrite the density matriz as a probability distri-
bution over different states. For example, consider the stales |+) ‘.? (]} 1)
v
and | =) ‘.‘[_|U'_.\ —|1)). Then, we can rewrite the density matriz as:
VoL :

p= ( I(l),-q(1| 1) (1) 4 N({l_,:-:,_l |0y (1] + [1){0] |l;=.‘|}|_1/) i 2||,:~\|\ (18)
6 = l(\l}‘“ B )0+ (1)) A JHU"‘ [L))({0] — {1]) 4 : 1 (19)
= 8" / L0 L 8 / IDARY ey 5 i (
. 1 .
;)*I\— ++—|—n—|+— 1)1}, (20)
which is a stalistical mixture of the states |1), |+ and |—=). The density matriz

does not contain information aboul how a state s preparved.

L [T 2

In general, for artrrr————————————— 0115, we cal always

=6 100%
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of the states |0) and |1), thus the density matriz 1s:
. 1 10)(0) 3
0 I 4
EE g !

We want to show that we can rewrite the density maotriz as a probability distri-

L){1]. (17)

bution over different states. For ecxample, consider the states |+) = —_‘_—.).( 0)+ 1))
VoA /.

and |—) = 1)) Then, we can rewrite the density maotric as:

1 l ‘ . N .
jp= (—I(' 0)(0] + [1)(1]) + :(' 0) (1] = 10y (1] + [1){0] — |1;<.u|__1) +z [1){1] (18)
\ [ F4

: (. . _— L . . | RS )
p==(0) 4+ |10+ {1]) + =(]0) = [1))({0] = {L]) + = |1)(1] (19)
g / R I
) I\ ) {4 |J| |H1"’1 (20)
) = — |4){ - ) { —|1%{(1]. 9
p= 7R+ 71201+ 5 11X (20)
which is a statistical mizture of the states [1), |+ and |=). The densily matriz

does not contain mformation aboul how a state s prepared.

In general, for arbitrary states and probability distributions, we can always
find infinitely many sets of states that one can use for probabilistic prepara-
tion/interpretation. More formally, if T consider one set {|¢,)}, we can find
infinitely many sets {|¢;)} so that:

p= Zp.f “-'1}{{";| = Z qj |‘-)-a_:“’::f-’_;| ) (21)
J a1

v W& 100%
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Expectation values of operators We can express the expectation value of
an observable O in a state of density matrix p as

(0) = Tr(50) (22)

The expectation value of an observable O, can also be thought as an expectation
of a classical distribution. Assume {¢;} to be the basis that diagonalises the
| By definition the trace is:

/

density matrix: g = L pile)

(0) = Tx(pO) = Y (¢,|0]e,) (23)

J

We write the density matrix in its diagonal form in the basis {|¢;) }:
0y =" pilejlee]Ole;)
i i

= >_:Xﬂ’((”(”(:_;?d'-f — }_j[),i( |()|f|,'; (\2]]
iod

i

S0, 1t 1s the average of expectation values of O for all the possible pure states,
with the probabilities being those of the pure states.

2.4 Pure and non-pure states

If we know exactly vk e b (f the system, then

- W& 100%
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50, 1t 18 the average ol expectation values of O for all the possible pure states,
with the probabilities being those of the pure states.

2.4 Pure and non-pure states

If we know exactly which vector in ‘H represents the state of the system, then
the density matrix is p = [¢)(¢/|. Such a rank-1 density matrix p is said to
represent a pure state. If p is pure, then

[
(w2

ph=p=Te(p%) = Tr(p) = 1 (s
and, since p is of the form (15), we have that
Tr(p?) = 1= p* = p. (26)

— . | . v . -y
[hus, if the trace of p< equals 1 then the state is pure, and the function p= can
be thought of as a measure of purity.

Definition 2.1 (Purity). We define as purity of a state p:

P(p) = Tr(p%) (27)

Purity is bounded from above and below:
1/d < P(p) <1, (28)

where d is the dimension of the Hilbert space H.

e

~ @ & 100% [F43)
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[t is easy to check the bounds of purity: We know that the maximally mixed
state (the state with the highest Shannon entropy) is a multiple of the iden
tity (homogencous distribution over all possible orthogonal sets of pure states)
Proase = 1]‘, . Therefore the minimum possible purity will be the purity of ..

/1 4 \ 2 | |
Pl-1) -1 ( u) T (1) 20)
(ri ) \a 2 =y (29)

Additionally, one needs to prove that the purity is monotonically increasing as

one gets from a mixed state to a pure state, consider the following family of

states

(1 —a)-1 (30)

{}:r1|t_"

For @ = 1 we have a pure state and as a decreases, the state becomes maore and

more mixed until it becomes maximally mixed for @ = 0. Then.

) / a9 P 2 \ . . 1 PR

i (\H’b Fall —a) - |f {1 | (1l —a)” {F 1 o (31)

‘ ‘ 2, ) o 1 e

Trp? a?+a>(1—a)+ (1 —a)? WJ) - (32)
d : f?

‘ ‘ 1. 9. f 1y . 1 S

'|'i',r3‘2 a’ + d['l - H‘)_} (l - “:/) a? + p (33)

which is a monotonically increasing function of a.

So, we have shown two things. Most importantly that purity actually quan-
tifying the purity of a state, as it monotonically increasing with the purity of a
state. Secondly, this monotonicity yields the inequality (28).

2.5 Von Neumann Entropy

- @6 100%
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For a = 1 we have a pure state and as a decreases, the state becomes more and
more mixed until it becomes maximally mixed for ¢ = 0. Then.

5 [ L2 PO .
Pl = (\:;‘ ball r;]; [ (4] + (1 r:_]“r]—g]l/) = (31)

] g il .— - 5 p . I ) p \
Trp” = (r:“ | r;—fq\l a) + (1 u}‘?d) = (32)

2 vl . / l ¢ "
Trp*=a"+ (1 —a”) = ( 1 - - (33)
(

~

=

=

™ -
2

S| -

which is a monotonically increasing function of a.

So, we have shown two things. Most importantly that purity actually quan-
tifving the purity of a state, as it monotonically increasing with the purity of a
state. Secondly, this monotonicity yields the inequality (28).

2.5 Von Neumann Entropy

The von Newmann entropy ol a state is defined as the Shannon entropy associ-
ated with the probability distribution over distinguishable pure states that the
density operator p represents.

Definition 2.2 (von Neumann entropy). Let a system be in o stale p.
The von Newmann entropy of that state is:

S(p) = =Tr(plogp) = — >_‘p,- log p; (34)

The von Neumann entropy is bounded by 0 < S(p) < logd. Multiplying
by the coefficient kT we get the entropy dimensions that are compatible with
thermodynamies.

47

Page 9/18



Pirsa: 24030051 Page 10/18




——

P* vlu]zz oY) I ;IU;’Y Huxﬂ\’w\‘c_\_& €

J o D-LQY )"’“’U(- JM{ 1

Pirsa: 24030051 Page 11/18




MAX A~ O | ev -n-;LA» N A C C_J Vaavs

| . i \

l AN ‘ ) ‘ // {/\l g 1) AWJ
Lim lis { .’m";',__b__j <l‘\ _ L onetun T A \{fw; R {‘\ 5 e ’C_, s S

B e

Pirsa: 24030051 Page 12/18




Pirsa: 24030051 Page 13/18




Pirsa: 24030051 Page 14/18




Pirsa: 24030051 Page 15/18




Pirsa: 24030051 Page 16/18




Pirsa: 24030051 Page 17/18




Pirsa: 24030051 Page 18/18




