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Abstract: Weak measurements can be viewed as a soft projection that interpolates between an identity operator and a projection operator, and can
induce an effective central charge distinct from the unmeasured CFT. In the first part, | will discuss the effect of measurement and postselection on
the critical ground state of a Luttinger liquid theory. Depending on the Luttinger parameter K, the effect of measurement is irrelevant, marginal, or
relevant, respectively. When the measurement is marginal, and we find a critical state whose entanglement entropy exhibits a logarithmic behavior
with a continuous effective central charge as a function of measurement strength. Inspired by this result, in the second part, | will discuss a
holographic description of the weak measurement. The weak measurement is modeled by an interface brane, separating different geometries dual to
the post-measurement state and the unmeasured CFT. In an infinite system, the weak measurement is related to ICFT via a spacetime rotation. We
find that the holographic entanglement entropy with twist operators located on the defect is consistent in both calculations for ICFT and weak
measurements. In a finite system, the weak measurement can lead to a rich phase diagram, in which the post-measurement geometry can realize a
Python's lunch.
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Local Projection Measurements

Projection measurement often induces a radical change of the wavefunction. For instance, local projection causes

the wavefunction unentangled.

In a conformal field theory, the local projection measurement
onto a boundary state is described by a slitat 7 = 0 in the
imaginary time path integral. It can be mapped to a BCFT, e.g.

J-M Stephan, PRB 90, 045424 (2014)
M A Rajabpour, PRB 92, 075108 (2015); J. Stat. Mech. 063109 (2016)

Accordingly, in a holographic system, local projection
measurements create end-of-the-world brane anchors at the
boundary of measurement region.

T Takayanagi, PRL 107 101602 (2011)
M Fujita, T Takayanagi, & E Tonni, J. High Energ. Phys. 2011, 43
T Numasawa, N Shiba, T Takayanagi, et al. J. High Energ. Phys. 2016, 77

The boundary state has trivial spacetime dual

M Miyaiji, S Ryu, T Takayanagi and X Wen, JHEP 1505 (2015)
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Weak Measurements

Boundary state resulted from local projection measurement has no entanglement and thus has a trivial spacetime
dual, can a more general measurement support finite entanglement and nontrivial spacetime?

Consider weak measurement operator:
M = e%°

" ForW=0M-=1
= ForW — oo, M o< |[T)(T|

= When @; M; acts on a critical state, the parameter W interpolates between the original state and a boundary
state

For a generic W, what is the resulted state? How to describe it holographically?

X Sun, H Yao, SKJ, New critical states induced by measurement, 2301.11337
X Sun, SKJ, Holographic weak measurement, JHEP12(2023)157

Note that there are related studies SJ Garratt, Z Weinstein, E Altman. PRX 021026 (2023); Z Yang, D Mao, CM Jian,
2301.08255; Z Weinstein, R Sajith, E Altman, SJ Garratt, 2301.08268
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Outline

" Weak measurement in a Luttinger liquid (compactified boson CFT)

" Weak measurement in holography
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Luttinger Liquid Theory

Consider a spinless fermion chain with hopping t and interaction IV

H = —t 5(cleuns + 182.) 4 Vs (= 2) (s = ) —g ‘o g g -

The ground state is described by Luttinger liquid (compactified free boson ¢ = 1), with left and right movers and

T
K =
2(m — arccosV /t)

» K = 1:noninteracting fermion; K > 1 (K < 1): attractive (repulsive) interaction

Implement weak measurements on the ground state
_ MpmMt
Pm = Tr[MpMT|

= Measures the occupation number in a staggered way. Inhomogeneity creates potential that scatters left and right
movers (in boson language, measurement = vortex operators)

with the measurement operator: M = e~ W=Dy

= Measurement can be implemented by coupling to ancilla qubits, and then projecting them out

" When W — oo it becomes local projection measurements. For finite W, it is weak measurements
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Path Integral Representation

To construct the path integral representation of the weak measurements, we introduce a UV cutoff € for the

measurement M = limM_
e—0

Y(0)=y, 0 " 14 .
(Y2 Mclq) = [ Dy exp[—Sy], Su = f dTE (l/)l- 0y, +_(—1)lni)
P(-€)=1, - 5 =
The full path integral is
i, 7| < €
S = [T, drS(Wlop + H+ f@OW(-Dn;), f(o)=
0, || =€
e
such that [ dt (1) = 1. At € - 0 limit, we have —€
o
S = [dr (Yl o.p; + H + S(D)W(—~1)in;) ]
= The full path integral lives in the entire complex plane I_;C

®* The weak measurement creates an interfaceatt =0
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Bosonization

o .i. . .
Abelian bosonization: M ~ 1, Yp + h.c. ~ eV2PLeiV20R 4 p ¢ ~ cos 2¢

We have a free compactified boson with an interface (the measurement strength is v o< W)

2
S = fdrdx ((a(p) + 6(7)v cos 24))

2K
- - - v : m
Renormalization group equation
d‘[]‘ Y \ 4 A J
—=(1—-K)v
‘Ciil ( ) A r 3 F 3
K Y Y A J
dl
v=20

SJ Garratt, Z Weinstein, E Altman. PRX 021026 (2023)
® The vortex operator strength is controlled by the Luttinger parameter in the bulk

= The measurement at interface is not able to renormalize the coupling in the bulk
= K > 1 (attractive interaction) irrelevant, K < 1 (repulsive interaction) relevant.

= At K = 1, measurement is marginal, it is consistent because the theory is effectively a free fermion theory
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Path Integral Representation

To construct the path integral representation of the weak measurements, we introduce a UV cutoff € for the

measurement M = limM_
e—0

Y(0)=y, 0 " W .
(Y2 Mclq) = [ Dy exp[—Su], Su = f dTE (l/)l- 0z, +_(—1)lni)
P(-€)=1, - 5 =
The full path integral is
i, 7| < €
S =T drT(ploi + H+ fF@OW(-Dn;), f(@) =
0, || =€
e
such that [ dt (1) = 1. At € - 0 limit, we have —€
S = [dr3,(Plo.p; + H + S()W(—1)in;)
T l ol THL (T) nl .
= The full path integral lives in the entire complex plane I_;C

®= The weak measurement creates an interfaceatt =0
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Luttinger Liquid Theory

Consider a spinless fermion chain with hopping t and interaction IV
1 1

H=-t Zi(CLTCHl +hoe)+VE, (ni B _) (niﬂ B _)

2 2

e eee

The ground state is described by Luttinger liquid (compactified free boson ¢ = 1), with left and right fovers and

T
K =
2(m — arccosV /t)

= K = 1: noninteracting fermion; K > 1 (K < 1): attractive (repulsive) interaction

Implement weak measurements on the ground state

Mpm*

= — Wi ‘M = e WEi-Dn;
B TrMpMT] with the measurement operator: M = e i i

=  Measures the occupation number in a staggered way. Inhomogeneity creates potential that scatters left and right
movers (in boson language, measurement = vortex operators)

= Measurement can be implemented by coupling to ancilla qubits, and then projecting them out

" When W — oo it becomes local projection measurements. For finite W, it is weak measurements
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Bosonization

Abelian bosonization: M ~ zpftpR + h.c.~ eV2PLeiV20R 4 ¢ ~ cos 2¢

We have a free compactified boson with an interface (the measurement strength is v o< W)

2
S = fdrdx ((a(p) + 6(7)v cos 24))

2K
- - - v : m
Renormalization group equation
d‘[]‘ Y \ 4 A J
—=(1—-K)v
‘Ciil ( ) A r 3 F 3
K Y A J Y
dl
v=20

SJ Garratt, Z Weinstein, E Altman. PRX 021026 (2023)
* The vortex operator strength is controlled by the Luttinger parameter in the bulk

= The measurement at interface is not able to renormalize the coupling in the bulk
= K > 1 (attractive interaction) irrelevant, K < 1 (repulsive interaction) relevant.

= At K = 1, measurement is marginal, it is consistent because the theory is effectively a free fermion theory
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Entanglement Transition

Consider entanglement entropy of subsystem A with length x,:

When the measurement is irrelevant, we recover the entanglement entropy of Luttinger liquid

S—ll
A= 3 08 X4

When the measurement is relevant, the entanglement entropy is

* The leading component is an area law, and the subleading
correction exhibits a power law decay
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Density Marix Renormalization Group

We implement DMRG simulation to confirm the entanglement transition. We simulate the XXZ model, which is
equivalent to the spinless fermion after Jordan-Wigner transformation

Consider half chain entanglement entropy

" |rrelevant phases(K = 1.7 > 1):

= Relevant phase (K = 0.7 < 1):

A=0.6 -
2.2f ‘ i 0.305f,
: e '
2.0| e \
- i 0.295| 1
s, 1 @
1.65E .'»' 0.285
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Critical Point: Free Fermion

At the critical point K = 1, which means V = 0. The theory is a free fermion theory with left and right movers
H = [dxypT(=ic?0,)p with Y = (P, Pr)"

Recall that the measurement operator creates a potential that scatters between left and right movers

h = fdx Yio*y

This is effectively a mass term as g* anticommutes with o 2. Let’s ask what other similar measurements (as an

effective mass term) can be implemented. Include the possibility of superconductivity ¥ = (wL,sz,zp;r, g), there
are two additional mass terms:

= SSH mass: hy = [dxWTo¥y .
= p-wave superconductivity (¢ stands for the Nambu space)

h, = fdx Ylgypu*y

In the low energy theory, the effect of these mass terms is the same, so we expect to have a universal behavior for
all three measurements protocols
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Spacetime Rotation

To calculate the entanglement entropy after measurements, we insert twist operators in the time reversal invariant

T = O slice. It creates a branch cut.
E Brehm, | Brunner, JHEP 2015, 80

This problem is closely related to defect CFT via a spacetime rotation that has been extensively studied
(2n—-1/2)n

w VA

5m/2

S—— 3n/2

/2

_____._____

z = logw —1/2

spacetime
_—

rotation

2nm

3n

27t
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Effective Central Charge for Marginal Measurement

The defect CFT has been studied in [e.g. V Eisler, | Peschel, 1005.2144], there is an effective central charge

6
B = —W—)z{ [(1+ s)log(1l + s) + (1 —s)log(1 — s)]log(s) + (1 + s)Lig(—s) + (1 — S)Lig(s)}
So, with spacetime rotation the entanglement entropy of a subsystem A ®ith length x4 is S, = Ce;f logx—A

also in Z Yang, D Mao, CM lJian, 2301.08255

We calculate the half chain entanglement entropy using fermionic Gaussian state simulation. For the three
different measurement protocols, the results are identical

staggered potential B SSH mass N p-wave SC
1.( “I; %'v i ] = \ 0 B— ]
0.8 3 5f 0.8} 3 -E ‘-\\ 0.8 g - \'n___
L"'O4 n : ‘ o~ k—__ . - :”? . _3:“ | ot ;I- e
0.2 b
|)GD.....1.'9.2 - - : ::.7‘_____.‘_75-
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Outline

" Weak measurement in a Luttinger liquid (compactified boson CFT)

4 o

eff

Sa=—"logx,
3
e
_ —2/K+2 1
Sa=5+x, SA=§logx,q
0
1/2 1 K

" Weak measurement in holography
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Effective Central Charge for Marginal Measurement

The defect CFT has been studied in [e.g. V Eisler, | Peschel, 1005.2144], there is an effective central charge

= —%{ [(1+ s)log(1 + s) + (1 — s)log(1 — s)]log(s) + (1 + s)Lig(—s) + (1 — S)Lig(s)}

Ceff log=4

So, with spacetime rotation the entanglement entropy of a subsystem A with length X4 is Sy = .

also in Z Yang, D Mao, CM lJian, 2301.08255

We calculate the half chain entanglement entropy using fermionic Gaussian state simulation. For the three
different measurement protocols, the results are identical

: staggered potential . SSH mass \ B p-wave SC |
LI £ 7; \ 0 1 - ( J «58r ] ) R \
. . \

I,).{JD' 3 > F —
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Holographic Weak Measurement

Recall the boundary theory is a CFT with measurement at T € (—¢, €)

Euclidean path integral: partition function=Z2Z = fqu g,

—,  |tl<e
P |7l

$= e ) e+ f@Lw),  f@ =

0, |T| = €

I
/
/
/
/
Vi
/
!
/

For concreteness, the central charge of CFT is denoted as ¢;. We denote effective central charge by ¢z
C1 irrelevant

Ceff =4 Cefr € (0,¢1) marginal
® relevant
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Holographic Weak Measurement

We expect two bulk geometries separating by branes:
M, = M, denotes the region dual to CFT before measurement
\og = M, denotes the region dual to the measurement at boundary

/ » The branesendatt = +e¢

M,
x Consider Euclidean action with asymptotic infinite plane boundary

Pirsa: 24020095

The bulk solution is ds? = L;

2 2
M, —167IGNI = f ‘\/E(Rl + _2) + f VG2 (Rz o _2)
M, Ly M, L5
+2 Vh (K, — K, —T)
OM;

3L,

3L¢
Central charge: ¢, = —, ¢ =—= L =2L,;

’
N

Tension =T and K; = extrinsic curvature

dz%+dt?+dx?
zz

with interface brane determines by junction conditions
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Interface Brane

Brane solution

) Ly (o , 1 1 . Ly {9 , 1 1
Sy =—\[° +—=——=], simifip, = —=|T% + ===
¥ ZT( 12 Lz)' Y2 ZT( 12 12

2

AdS, y AdS, ’ AdS,

- —— ——— —— __-Q -

. s 11 1 1 . .
Tension locates within the range: — — = <T< = + ” The phase diagram is Tl;,
2 1 1 2

>

= At i—z = 0, BCFT limit, the interface brane reduces to ETW brane. This corresponds
1

the relevant case. State after measurement becomes area law and does not have a

dial ICFT
L . : : ,
= At L—Z = 1,T = 0, two geometries merge into one. This corresponds to irrelevant case
1 >
= |CFT correspond to the marginal case with an effective central charge and boundary 0 1 op,/L,

entropy
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Consider the marginal case
symmetric slice:

The geodesic length is

According to RT formula

Pirsa: 24020095

Entanglement Entropy

: consider entanglement entropy of a subsystem A after measurement at the time

_ X
d =L, coshﬁ ~ L, log

-3

i1
2Gy

X4
a?’

)log%‘ = Ce%log

XA
a

a=UV cut off, x,= length of subregion A
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Spacetime Rotation

. dz?+dt?+dx?
Because the bulk metric ds? = L;

is symmetric in (x, T), we can simply make a rotation and find the

ZZ

same solution of branes.

C Bachas, J de Boer, R Dijkgraaf, H
Ooguri, JHEP 06 (2002) 027;

O DeWolfe, DZ Freedman, H. Ooguri,
PRD 66 025009 (2002);

J Erdmenger, Z Guralnik, | Kirsch

PRD 66, 025020 (2002);

J Erdmenger, M Flory, MN Newrzella,
JHEP 01 (2015) 058;

We are interested in the two cases T Anous, M Meineri, P Pelliconi, J

Sonner, SciPost Physics, 13, 075
= One end of the RT surface anchors on AdS, x = 0, and the other on AdS; (2022)..

=  RT surface is symmetricw.rtx = 0
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Interface Brane

Brane solution

; _bifme s L A : _Lyfpp 11
51n1,01-2T(T +L§ Lz), smlpz—ZT(T +L% %

2

AdSl > AdSl ’ AdSZ

- —— —— ——— __-Q -

. s S | i 4 . .
Tension locates within the rang@: — —— < T < — + —. The phase diagram is

2 Lq Ly Ly

At i—z = 0, BCFT limit, the interface brane reduces to ETW brane. This corresponds
1

the relevant case. State after measurement becomes area law and does not have a
dual

K . . . :
At L—Z = 1,T = 0, two geometries merge into one. This corresponds to irrelevant case
1

ICFT correspond to the marginal case with an effective central charge and boundary
entropy
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Holographic Weak Measurement

We expect two bulk geometries separating by branes:

M, = M, denotes the region dual to CFT before measurement
+€
e B3 = M, denotes the region dual to the measurement at boundary
= iy " Thebranesendatt = te
~ MZ
Q Consider Euclidean action with asymptotic infinite plane boundary
- 2 2
\ M1 _16HGNI = f Va1 (Rl o L_z) + f VG2 (RZ %+ L_z)
W My i M, 2

+2 Vh (K, — K, —T)

3M12

3Ly 3Ly
el . -1 — 2., .

Central charge: ¢4 ZGN'Ceff 26y Li = Ly;
*» Tension =T and K; = extrinsic curvature

o dz?+dt?+dx?
= The bulk solution is ds? = L; =

with interface brane determines by junction conditions
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RT Surface Anchorsonx = 0

RT surface (geodesic) anchorsonx =0

The geodesic length is d=(4+L,) logxf + d,, a=UV cut off, x,=length of subregion A
= We have taken € — 0, and the result is well-behaved under such a limit

= d, isindependent of x,, d, is in general UV dependent because of the leading logarithmic function.

cq+cC X
The entanglement entropy is Sp = 1Tefflogf

= Each twist operators in two different regions contribute to the entanglement entropy

= Effective central charge is the same as the state under measurement A Karch, ZX Luo, HY Sun, JHEP 09 (2021),
A Karch, M Wang, JHEP 06 (2023).
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RT Surface Anchors on Symmetric Points

Geodesic anchors on symmetric points

AdS,

2x4 1+sin Y

.02
The geodesic lengthis d =d; +d,,d; = 214 log( . ), ds; = Ls cosh™ (M), a=UV cut off,

cos Y4 cosZ 1,

= We have taken € — 0, and the result is well-behaved under such a limit
. 2X 4
The entanglement entropy is Sy = —logT + Spay
" Boundary (interface) entropy Sp4y = %log (tan (% + g)) + Cf;llog (tan (% + g)) is well defined because we

can subtract the case without defect, i.e., the leading term
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Boundary Entropy from Partition Function

In the symmetric case, we obtain the boundary entropy associated with the interface. We can calculate the
boundary entropy from the partition function:

Z = Tr[Me~# " MT] = lim(0|M.M/|0)
€E—
V1

AdS, AdS,

The boundary entropy is (Z;4qq1e = €~7):

Spay = —(I = 1p) = 2(py + p,) with tanh =X = sin g,

= ], is the action without the interface

= consistent with the symmetric geodesic Sp,qy = %log (tan (% + E)) Sk Ce%log (tan (% + E))

= Naively the result is two independent sum from two bulk dual, but it is not: v, is a function of L, L, and T
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Holographic Weak Measurement for Finite System

Consider the CFT in acircle withR = 1

N Similarly, we expect two bulk geometries separating by branes:
e = M, denotes the region dual to CFT before measurement
i = M, denotes the region dual to the measurement at boundary
ti <SS = M = Thebranesendatt = +§4
", We use the same convention
L -="7== g = Central charge: c; = %,ceff = %; Li = Ly;

= Tension=T

For region M,, we have a global AdS metric, but now for region M, we can have either AdS or BTZ black hole metric

r? e !
ds? = (1_ﬂ)+L_2 dt? + (1—;,1)+L—2 dr? + r?dx?
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Phase Diagram

Fortunately, the phase diagram has been studied in [P Simidzija, and M Van Raamsdonk, "Holo-ween" JHEP (2020)].
There are two classes of phases:

- *= The no-bubble phase, it is similar to the
infinite plane boundary case: two AdS
— 1 te with different L are separated by branes
P — o
L ¢
CFT, AdS,
= measurement-
CFT, * The bubble phase, it is given by the joint

geometries of AdS (dual to the
unmeasured CFT) and BH (induced by
measurement)
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Entanglement Entropy

We are interested in the entanglement properties of the state upon measurement. We focus on the time reflection
symmetric slice.

* |n no-bubble phase, the time reversal invariant slice is located within AdS, phase b= ]
S, = =LLpgZa
A 3 087,

* |n bubble phase, the time reversal invariant slice cuts through both geometries. The RT surface will cross the
brane and enter AdS; Sy = %logxf

bubble-outside-horizon phase bubble-inside-horizon phase

x

Therefore, the no-bubble phase is the marginal case, and the bubble phase is the irrelevant case.
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Conclusion

c
S4= eTﬁlogxﬁ

" Weak measurement in a Luttinger liquid (compactified boson CFT)

= 1
Sa =.S‘o+;vc‘qmprz Sa =§logx,q

1/2 1 K
®» Weak measurement in holography

2.0F

AdS,

1.5¢

A + _ l:'w 1.0} 1 mno-bubble
11_1‘)1{1)(0 | MeMe |0) = AdSl = bubble-inside-horizon
€ - = bubble-outside-horizon
0.0t ‘ ; .
00 02 04 06 08 1.0
Bl
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