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Abstract: Feynman diagrams and the associated integrals are crucial in perturbative quantum field theory for translating theory input into concrete,
observable quantities. | will talk about the fascinating interplay of physics and mathematics that emerges from the ensemble of these diagrams. From
linear algebra to quantum mechanics or wave phenomena to Fourier analysis - physics and mathematics tend to regularly exchange ideas that often
lead to breakthroughs on the other side. | will illustrate two new examples of such exchanges | contributed to. One exchange is from the
mathematical theory of tropical geometry to evaluating intricate, physically relevant Feynman integrals that have been inaccessible before. In the
second exchange, we used ensembles of Feynman diagrams and their renormalization to prove a long-standing conjecture in geometric group
theory. The results give new insights into the 'dark matter'-problem in the moduli spaces of graphs and curves cohomology. Both these moduli
spaces cohomologies are of fundamental interest in algebraic geometry, topology and geometric group theory.

Zoom link
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Algebraic geometry at the limits of perturbative QFT
and dark matter in moduli spaces

Perimeter Institute — February 20, 2024

Michael Borinsky, ETH Zirich — Institute for Theoretical Studies
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Quantum field theory Moduli Spaces

Language of physics at the Collect geometric objects with
fundamental level varying parameters

Central structures in
(algebraic) geometry,
topology and group theory

+ Interaction between both
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Part |

(Tropical) Geometry —> Quantum Field Theory

applied to
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Quantum Field Theory

Input Output

Lagrangian Perturbative expansions

_ n_ IG |G|
o)=Y A= Y |Aut(G)|'1

n>0 graphs G

dPk,---dPk;,

I —J il
¢ JTLD.

Feynman integral
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Perturbative QFT work-flow used to describe

Particle physics (e.g. collider phenomenology)

Condensed matter physics (e.g. percolation theory (e.g me-cracey-kompaniets-schnetz '21))

Classical gravity/field theory

Various structures in mathematics (— more about that in Part 1)
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Questions .
O) =Y A, A"
n=0

Lower orders Ay, A, A,, ... needed to interpret experimental data.

Abstract questions

Practical questions

s there an algorithm to compute A, ?
What is the value of Ay, A{, Ay, Az, ...7 | =P
What is the fastest algorithm?
How can we calculate them effectively?

What is its computational complexity?
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Theoretical motivation
O) =) A"

n=0

Computational complexity of A, gives an explicit limit of our
understanding of nature

Example
The Muon g — 2 value is one of the most accurate predictions of theoretical physics.
Q: How many digits would we get using all of earth’s computers after 7 year/10 years/a lifetime?

Q: What is cheaper eventually (i.e. scales better): theoretical prediction or experimental measurement?
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Runtime of perturbative QFT predictions

00 IG
= n A =
6 =Y A, = A
n=0 graphs G
|G| =n

Runtime to compute A,

6( ¢"(n+k)! x F(n) )

s —J
g of Feynman graphs Runtime to evaluate a
with n loops 7 single Feynman integral

Q: What is F(n)?



Feynman integral evaluation

[ dPk,---dPk,
NIntegrate

[1.D.

...unfortunately, does not work. Evaluating /; turns out to be
a complicated & interesting algebraic-geometric problem.
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Feynman integral evaluation

! —Jdel"'deL—c J N
“ ) IILb. ), Uzt

(2 (Parametric representation)

op={a € R'ﬁ)' : Zae= 1} Q= Z(—l)kakdalf\ /\sz; A ... ANdag
k

e

oy or o
N, U, F are homogeneous polynomials in ay, ..., &g

Vanishing loci of A, %, % meet boundary of 6; = many singularities

irsa: 24020090 Page 11/54



Fast evaluation algorithm for rational integrals

] — E Q with p, g polynomials in &y, ..., &

o, 4

n

Theorem (MB 2020)

If the Newton polytopes of p and g are generalized permutohedra™,
then there is an O(n2" + Mn5_2) evaluation algorithm for /.

1 fulfilled by Feynman integrals

n: dimension of the integral; M, : runtime to evaluate p/g; O: rel. accuracy
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Critical technique: Tropical geometry

MB 2020

Tropical geometry is a degeneration technique in algebraic
geometry in which the limiting object is combinatorial.

In the tropical limit, the rational integral I = J B (2 becomes the volume of a polytope.
q
O,

n

Tapping properties of special polytopes, generalized permutohedra, enabled the fast algorithm.

E.g. from: Postnikov 08; Aguiar-Ardila 17
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Cartoon ‘Example’

1= x%+ y2 - 1= (x2 + y2)“ = max{x2.y2}

ly y

Rationalisation
V=nrx . |74

Il
N
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Numerical Integration of Feynman
integrals is a combinatorial task on
certain polytopes
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Tropical sampling algorithm MB 2020
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Algorithm 4. Algorithm to generate a sample from u" for generalized permutahedra

Set A =[n]and k = 1.
while A # @ do

Pick a random e € A with probability p, = J,}A) {r&‘i\\eff))_
Remove e from 4, i.e.,set A <— A\ e.

Seto(|A]) = e.

Set x, = k.

Pick a uniformly distributed random number £ € [0, 1].
Set k « £/,

end while
Return x = [x1,...,Xs] € Exp(€;) C P?;' and o = (6(1),...,0(n)) € S,.
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Improvements to traditional methods

» Fastest evaluation algorithms for Feynman integrals to date. Previous naive
methods worked up to = 3 loops, tropical based methods up to 20.

* Runtime gquestion can be answered.

« Easy to implement.

= Lots of interest from various communities (physics + mathematics).
= New regimes in perturbation theory become accessible.

(Possible to study large-order behavior of pQFT — resurgence/non-pert. phenomena me-groadhurst-Dunne-Meynig '20-'22)

¥ Various possible extensions...
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Extension to statistics on toric varieties
(MB-Sattelberger-Sturmfels-Telen ’22)

Extension to integrals with Minkowski space-type singularities
(MB-Munch-Tellander '23)

+many other applications:
Heinrich ’20

Arkani-Hamed, Hillman, Mizera 22
Dunne-Meynig ’22

Brown-Schnetz ’24
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Open question
Is there a polynomial-time algorithm for Feynman integral evaluation?
State-of-art scaling: O(n - 2" @

n = #edges/propagators; 6 = rel. accuracy

57?n> can be improved to roughly 621 using
Spielmann-Teng '04 Laplacian solver algorithm.
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Open question
Is there a polynomial-time algorithm for Feynman integral evaluation?

State-of-art scaling: O(n - 2" + 6~?n?)

n = #edges/propagators; 6 = rel. accuracy

More ambitious open question

Is there a polynomial-time algorithm for amplitude evaluation in QFTs?

State-of-art scaling: O(a” - (n + k)! - (n - 2" + 6%n>))

n = perturbative order; o = rel. accuracy

A promising approach: QFT tropicalization
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Part li

Quantum Field Theory —  Moduli space
topology

applied to
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The moduli space of graphs
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A motivation from physics

N
) J Q
| Aut(G) | UaFb

Sum over graphs of order Mrpreted as integral over the

moduli space of graphs, /&,
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Moduli space of graphs /¢,

» Each point in /G, is metric graph i.e. a pair (G, £') where
« (G is a graph with g loops and vertex degree > 3
« E—> Rzo assigns a positive length to each edge, such that Z cLe=1
* and such that there are no cycles of length 0.

« Fore € G, the point (G, £) where £(e) = 0 is identified with (G/e, £).

* Isomorphic metric graphs are identified.
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MG

|dentified
due to isometry
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Physics analogy

Moduli space of curves

M g

< 2D quantum gravity

Moduli space of
graphs

ME,

< 1D quantum gravity
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Moduli space of graphs /¢,
Why is it interesting?

MG 4 is a (rational) classifying space for Out(F g) (Culler-Vogtmann 1986)

Topology of ./ & , related to many other objects
(Kontsevich 1992; ...)

Non-pure-math relevance: phylogenetic trees, QFT (e.g. CHY formalism), ...

Tropical geometric version of the moduli space of curves g
(Abramovich-Caporaso-Payne 2015; Chan-Galatius-Payne 2021)
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Cohomology of /G,

Roughly, H*(. % ,) measures k-dimensional holes in /£ Z .
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Low rank computations

Ohashi 08, Bartholdi '16

dim H* .« 9, Q)
(Similar in character kg | 2 | 3 | 4 | 5 | 6 H 8 | 9 [ 10 "

to particle physics L.

IBP reductions) 10 0

9 0 | o

8 1 1

7 o 0 | 0

6 0 0 0

5 0o | o | o | o

4 1 0 0 0

3 0 0 0 0 0

2 0 0 0 0 0

1 o] o o o | o | o

0 1 1 1 1 1 1
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Low rank computations

Ohashi 08, Bartholdi '16

dim HY X & ,; Q)
kg | 2 3 4 5 6 7 8 9 | 10 | 11
1
10 0
9 0 0
8 1 1
7 0 0 0
6 0 0 0
5 0 0 0 0
4 1 0 0 0
3 0 0 0 0 0
2 0 0 0 0 0
1 0 0 0 0 0 0
Euler characteristic 0 1 1 1 1 1 1
MG = (—DidimH (M G,) 1 |1 | 2 | 1 [ 2 | 1
k

Pirsa: 24020090 Page 34/54



Lots of unexplained cohomology

Theorem (MB-Vogtmann, Adv. Math '23)

g
XME,) ~ — e (ﬁ) /(g log g)? for large g.
e

= The dimension of H*(M & ;) grows rapidly with g.

. Also, gives an effective generating function for y(.# E‘?g),

« and answers open questions on graph complexes
Kontsevich ’92, Morita-Sakasai-Suzuki ‘15

Pirsa: 24020090 Page 35/54



Low rank computations

Ohashi 08, Bartholdi '16

dim HYA G 3; Q)
K\g 3 4 | 5 | 6 7 8 | 9 | 10 | 11 | 12
11
10 0
9 0o | o
= Lots of 8 1 N
i ) 7 0 0 0
Dark matter’| |- T o o
5 o 0o 0| o0
4 1 0 0 0
3 0 0 0 0 0
2 0 0 0 0 0
. 1 o 0o o] 0 | 0
Euler characteristic 0 1 1 1 1 1
1 2 1 2 1 1 -21 | -124 | -1202

MG =Y (- DidimH (M G,)
k
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Morita-Sakasai-Suzuki ‘14
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Lots of unexplained cohomology

MB-Vogtmann, Adv. Math ’23

Used combinatorial, analytic arguments and earlier results on the virtual Euler
characteristic, ){Vlrt(ﬁ?g), of .ﬂ?g, (MB-Vogtmann, Comment. Math. Helv. '19)

Effectively we showed that:
;L%X(ng)/XV1rt(/%?g) - 8_1/4,

which contradicts the expectation that /"™ — 1.
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Quantum field theoretical guidance

MB-Vogtmann, Comment. Math. Helv. 19

The generating function T(h) = Z AL /A ‘fé’g)hg_l acts as counter-term

for a zero-dimensional quanturﬁzf%eld theory
1 1 X _
1 = Jexp (—(l—x—ex)+—+T(—he x)) dx
\/ 27h n 2

‘Semi-classical’ analysis gives asymptotic results
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Extension to ./ &, with legs

Extension to moduli space of graphs with legs gives new stabilisation result:

Theorem (MB—Vermaseren, preprint ’23)
If n > g, then Hk(./%?g,n; Q) ~ Hk(./%fg,m; Q) for all k.

This large-n stable cohomology of ?g,n is nontrivial.

(Guided by computations using particle physics software: FORM)
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More applications

Theorem (MB-Briick-Willwacher, preprint ’23)
H(# Q) > H(MGy; Q) @ H(MG y; Q) D -

Rational cohomology of the handlebody group # p is also large.

Additional techniques used: (modular) operads and Feynman transform

(Getzler-Kapranov ’'98, Giansiracusa ’11, Hainaut-Petersen ‘23)
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Open question
What are all these classes in H*(./ G,)?

The ‘dark matter problem’ of moduli space cohomology



Moduli space of curves .Z ¢
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M, =

Space of all hyperbolic metrics on a compact,

connected and orientable surface of genus g
modulo isometric diffeomorphisms

i.e. space of compact (1+1)-dim spacetimes.
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62 o
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‘Boundary’ of ./ . has the same topology
as /G ,, the compactification of /&,
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Y , gives information on the topology of ./,

Theorem (Chan-Galatius-Payne ’21):

The homology of ?g injects into the cohomology of /# g
H,_ (G ,) - H% k)

(Image is the top-weight cohomology of ./%g)
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Q: How much cohomology lives
In the top-weight piece?
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Euler characteristic of ./ &, computed by infinite-field 0-dim QFT

Theorem MB ’24 (upcoming)

g>2 k>1
( ( \\
s dx 1 ( X \
‘P(h)zj(H X )exp Z— exp Zﬁ -1 —x
k=1 \/2ﬂhk/k \k>1 knk \ \ 721 2 ) )
/




...which turns out to be integrable
O@) = ) (MG 1) 278

g>1

zcb(zk) _ 2 s J —llog SJ-(.Z) —ijA S,-(; N 1+(.—1)f
ko S@) 2 " d 7 4

k>1 i>1

Ax)=1—-x+xlogx

Bk+1 k
B (x) = f
2 gf K+ 1)

$i2) = ), u(d)z"

d|j

MB ’24 (upcoming)



Asymptotic/Semi-classical analysis gives

Theorem MB 24 (upcoming)

C, (—1)%? (C, g)g_% foreven g — o0
){(ﬂ(g ) ~ < T 2
i ¢, sin (@ - (g - %)) (CHVE(C,g)7™" forodd g — oo



Implication for .Z,

Theorem MB ’24 (upcoming)

(Cg)* foreveng

dimGr)Y HY.,) >
; top ¢ (Cg)? forodd g

Theorem Harer-Zagier ‘86

D' dim HX () > (C g)*
k

= There are super-exponential amounts of top-weight cohomology in ./ g
but still only a small fraction of the cohomology has top-weight.
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Summary

* Physics-inspired methods are fantastically effective to solve state-of-the-art
questions in geometry & topology

» Current research in algebraic geometry very applicable to problems in physics

= Fascinating connections between fundamental objects in different domains
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