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Abstract: The first stars are expected to form through molecular-hydrogen (H2) cooling, a channel that is especially sensitive to the thermal and
ionization state of gas, and can thus act as a probe of exotic energy injection from decaying or annihilating dark matter (DM). | will discuss using a
toy halo model to study the impact of DM-sourced energy injection on the H2 content of the first galaxies, and thus estimate the threshold mass
required for a halo to form stars at high redshifts. | will show that currently allowed DM models can significantly change this threshold, producing
both positive and negative feedback and estimate how this can impact the timing of 21cm signals at cosmic dawn.
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INTRODUCTION

Two considerations in searching for dark matter

® What are the most model-independent signatures of dark matter
we can look for?

E.g., exotic energy injection
= What new data is coming out that we can leverage!?
High redshifts: 21cm cosmology, JWST, etc.

First look at the first stars and galaxies
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INTRODUCTION

® The collapse of a halo into stars becomes a complicated and
highly nonlinear process = requires simulations

= We will pave the way for simulations by identifying the most
interesting models for study
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EXOTIC ENERGY INJECTION

Energy injected into electromagnetic observables,
not by processes in ACDM/Standard Model

Focus on decaying dark matter

Could generalize results to

Annihilating dark matter

Evaporating primordial black holes

Accreting primordial black hole;s
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WHAT IS YOUR MODEL/LAGRANGIAN?

= Do not require specific particle physics model; only need
m Redshift dependence of energy injection rate
® Spectrum of primary particles
m E.g.for decaying dark matter, we need to specify
® Dark matter mass
® |nteraction rate/decay lifetime

® Focus on decay to electrons/positrons or photons
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EFFECTS OF EXOTIC ENERGY INJECTION
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DarkHistisry

= Download at https://github.com/hongwanliu/DarkHistory

® Calculates global temperature and histories, while
self-consistently including models of exotic energy injection

" DarkHistory v2.0: major upgrades to also calculate
evolution of radiation background

= Improved treatment of low-energy electrons

= New machinery to track more hydrogen levels

Liu, Ridgway, & Slatyer 2020
Liu, WQ, et al. 2023 (arXiv:2303.07366)
Liu, WQ, et al. 2023 (arXiv:2303.07370)
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EARLY STAR FORMATION

First halos cool/collapse via molecular hydrogen (H,)

, ionization, and background radiation all affect
formation of H,
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COLLAPSING HALOS

= Treat gas as spherical top-hat (uniform density)

® First, overdensity must collapse and virialize to form a halo

kinetic energy
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COLLAPSING HALOS

= Treat gas as spherical top-hat (uniform density)
® First, overdensity must collapse and virialize to form a halo

® For baryons to continue collapsing, must dissipate kinetic energy
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COLLAPSING HALOS

= Smaller halos = less efficient at cooling, stay pressure-supported

%@E? ]

Py |
-P-D- o0
A R

e 2 R &

time

irsa: 24020076 Page 12/32



COLLAPSING HALOS

= Smaller halos = less efficient at cooling, stay pressure-supported

m Larger halos = cooling wins, runaway collapse, form stars
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TRACKING HALO EVOLUTION
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TRACKING HALO EVOLUTION
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TRACKING HALO EVOLUTION

m  After virialization

Hold density fixed and continue

to evolve other quantities

® Halo cools fast enough to
collapse if temperature drops

substantially within a Hubble time
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INCLUDING EXOTIC ENERGY INJECTION

® DarkHistory tracks how energy is deposited into heat,
ionization, and radiation globally

= We assume the energy deposition per baryon is the same in
the halo and include this in the halo evolution

m Justified by following simplified cascades

®  Assumption is valid for most decaying dark matter models
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CRITICAL COLLAPSE

®  Calculate the halo mass above which halos collapse

T
everything can collapse

Halo mass, Myao [Mg)]

Redshift, 1 + z
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CRITICAL COLLAPSE

®  Calculate the halo mass above which halos collapse

= How does dark matter energy injection affect this value?
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EXAMPLE

m |et’s examine effects one by one

Critical halo mass, My, [Ms)
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WQ, Munoz et al. 2023
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EXAMPLE

® |onization: more free e catalyze H, formation, so more cooling

I
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—— + DM heating
107 = ===+ DM ionization -
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10 107
Redshift, 1 + z WQ, Muiioz et al. 2023
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EXAMPLE

m Small effect from H- detachment

= Lyman-Werner background raises threshold (uncertain astrophysics)

—
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EXAMPLE

® Adding them all up...net effect can be redshift dependent

m Bracket effects of LW radiation
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STAR FORMATION vs CMB CONSTRAINTS
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STAR FORMATION vs CMB CONSTRAINTS
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EXAMPLE

® Adding them all up...net effect can be redshift dependent

m Bracket effects of LW radiation
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STAR FORMATION vs CMB CONSTRAINTS
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STAR FORMATION vs CMB CONSTRAINTS

A Miaio(1+2=20)
iﬂ‘[halu

30 1 1 T T 1 T

Efficient self-shielding e
291~ -

1.00

|
.;.
[~
o7}

log o7 [s]
|

=1—0.25

—0.50

—0.75

—1.00

|

] 9 10 11 12
logiom,, [eV] WQ, Mufioz et al. 2023

Pirsa: 24020076 Page 28/32



\"w

2lcm cosmology . *L'

Hyperfine tran5|t|on of neutral hydrogen 9 2Icm*I|n‘

PO O

W
Lots of neutral hydrogen before stars form/ relonlzatlon

-.'! e :,. -

Predlcted S|gnals depend on tlmlng of staréfo{batlpn
. B « . "‘“*r . i

Redshift= 160 80 40 15 14 13
50

¥

First galaxies form
0

Reionization begins Reionization ends

TTT1

Dark Ages

Brightness [mK)
(4]
o

Heating begins Cosmic time —__

LLlLJilllllii' 1111

° Trrr]rmw

60 80 100 120
Frequency [MHz]

n
8

Pirsa: 24020076 Page 29/32



Pirsa: 24020076

STAR FORMATION AFFECTS 21CM
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STAR FORMATION AFFECTS 21CM
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CONCLUSION

= Exotic energy injection is a relatively general feature of many dark
matter models

® Exotic heating/ionization/radiation have competing effects on star
formation: models can both accelerate/delay star formation

m Potentially detectable in upcoming 2cm data
® Future directions

® |nvestigate degeneracy with other astrophysical parameters
® Detailed hydrodynamical simulations

" [mpact on first black hole formation
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