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Abstract: Recent developments point to a remarkable resistance of black holes to tidal deformations under the influence of external gravitational
fields. Relying on hidden symmetries, compelling progress has been achieved to explain that the Love numbers, characterizing tidal deformations
for Kerr black holes, vanish. How does the phenomenon of tidal squeezing manifest in broader dynamical contexts? An examination of the
dynamical tidal deformationsin rotating black holes will be presented.
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Tidal Deformations of Black Holes

Outline

1) Motivation
2) Review: Static Love Numbers for Black Holes (BHs)

“Love Symmetry” by Charalambous, Dubovsky and Ivanov arXiv:2209.02091 [hep-th]
“Near-Zone Symmetries of Kerr Black Holes” by Hui, Joyce, Penco, Santoni and Solomon. arXiv:2203.08832 [hep-th]

3) Dynamical Tidal Coefficients for BHs

“Dynamical Tidal Love Numbers for Kerr Black Holes” by Malcolm Perry and M.J.R. arXiv: 2310.03660 [gr-qc]
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Tidal deformations are a gravitational phenomenon that causes a body to stretch along the
line pointing towards and away from the center of mass of another compact object.

This is a result of spatial variations in the gravitational field exerted on one body by
another, that is not constant across its parts.
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Tidal Squeezing in the Solar System

Figure 1: Jupiter-lo tidal interaction.

Jupiter
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Tidal Squeezing in Exoplanets

CHEOPS REVEALS A RUGBY BALL-SHAPED EXOPLANET

ESA's exoplanet mission Cheops has revealed that an exoplanet orbiting its host star within a day has a
deformed shape more ke that of 3 rugby ball than a sphere. This is the first time that the deformation of an
exoplanet has been detected, offering newr insights into the internal structure of these star-hugging planets.

Mass
1.5 x Jupiter

WASP-103 WASP-103b =
Host star Planet i
Size
- 10% of its y——
host star Atmosphere

1 Radius

\ 2 X Jupiter
Solid core —--‘\‘

Orbit Temperature
- 1 day EMECRveC 20 x hotter than Jupiter

. ) Internal structure
Cheops spotted a small difference in Likely very similar to

the typical transit light curve, caused that of Jupiter
by the deformation of the planet
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Galactic Tidal Deformations

Hubble Space Telescope

Seyfert galaxy NGC 169 (bottom) and the galaxy IC 1559 (top)
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Significance: compact objects with distinct internal compositions undergo distinct deformations.

Tidal squeezing in the farm.
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Tidal Deformation of Black Holes

Fundamental |dea:
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Tidal Deformation of Black Holes

Fundamental |dea:

Black Holes are nothing, simply boundaries of space-time.

Can we tidally squeeze BHs? How are tidal deformations for BHs characterized?

Can we explain universal features of tidal deformations of black holes? What can we learn from BH tidal deformations?
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Tidal deformations are a gravitational phenomenon that causes a body to stretch along the
line pointing towards and away from the center of mass of another compact object.

Figure I: Jupiter-lo tidal interaction.
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FIG. 1. Event horizon with a toroidal topology, shown in a
different time slicing than the one used in the SPFEC simulation.

Bohn, Kidder Teukolsky
Tidal Squeezing in Head-on Black Hole Collisions

Tidal Squeezing in Binary Black Hole Mergers
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Significance: compact objects with distinct internal compositions undergo distinct deformations.

Pirsa: 24020056

Binary Black Holes
A

=)
W N

FIG. 1. Event horizon with a toroidal topology, shown in a
different time slicing than the one used in the SPEC simulation.

Therefore, the extent of the tidal deformation should be discernible in the gravitational
wave and in turn be intricately linked to the inner structure of the entity.

The internal structure of certain objects is governed by he poorly understood nuclear
matter in e.g. NS and new unexpected effects in black holes.
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Tidal deformations in General Relativity (GR)

An important observation is that the tidal response coefficients, first identified by Love, k,,, can
be extracted directly from the solutions of the wave equation for all fields (integer spin fields):

CO = Compact Object such
as another BH or NS

N
1+ ke, (—) ] ,
s

£
@z_%_'_ (3212)! 5% Vi ot

# =1 m=—1¢

Gravitational
external potential

r/rs the dimensionless distance to the body
E,, multipole moment
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In the GR picture, it is convenient to look at the metric perturbation for the
description of the tidal deformation of the rigid object

Guv = Npv + h,uu .

The linearized Einstein equations for a small perturbation around flat Minkowski space

Ok, = 161G T, ,

Definition Gauge choice Point like source

hﬁ»u = hf-w - %hmw A vp}—ﬂw = (). : T»“E = (2/” _g)(a‘[matt”/dg#y)a
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In the case of black holes in 4D, the temporal metric component perturbations hu,
in the long r-distance limit can be written as

M (£-2) r\ !
D — Ymgmg 1+ ko | — res
v = 9) DI AT [ RT €3 R

=1 m=—¢

By comparison with the Newtonian gravitational potential, one finds a useful way to extract tidal
response coefficients from a gravitational potential generated by an external source in GR.

1
d——~h
2 tt 5

Therefore, at first glance, this provides us with a practical prescription, such that the tidal response
coefficients for Kerr black holes can be computed by using the so called Teukolsky equation

Vo, =
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Kerr black holes Tidally Deformed Kerr BHs

Characterized by
mass M and spin parameter a

Characterized by

mass M an in parameter i
ass M and spin parameter a and perturbations huv
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The problem of tidal deformations of Kerr BHs

1
®=—_h
. 2

Reduces to solving the massless scalar wave-equation equation Vd. — 0 g =5 L] 29
s — ’ - ) ’ I

®,(t,r,0,0) = e TR (r)S,(0), with weC and meZ.

Boundary conditions. The radial functions must meet the following ingoing boundary
conditions at the horizon

Ry(r) = const x (r — )™, with a; > 0 .
(r) = const x (r —ry) with o as T Ty 0= a/(QM?"+)
where we defined the coefficient T, =(ry —r_)/(8nMr,).
ry = M:E\/M2—(I2, L
Analytic Continuation
Maria J Rodriguez
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The problem of tidal deformations of Kerr BHs

1
®=—_h
. 2

Reduces to solving the massless scalar wave-equation equation Vd. — 0 5 = Ol I
s — ’ - ) ’ I

D, (t,r,0,0) = e TR (r)S,(0), with weC and meZ.

Boundary conditions. The radial functions must meet the following ingoing boundary
conditions at the horizon

A

R,(r) = const x (r —ry )"+, with ay >0 as Ty 0= a/(QM?"+)
where we defined the coefficient T, =(ry —r_)/(8nMr,).
g = ) g 2 re=M+VME—a2,
ar T, 2 _
Analytic Continuation . — ool \
Ry(r) — ar |1+ | — ke
r—00 Ts
Tidal (Love) Coefficients
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Love Numbers for Kerr Black Holes (BHs)
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Tidal deformations of BHs

Static tidal Love numbers , k,,, =0 for static gravitational
deformations (w = 0)

Satelitemm— 112152

" BH BH

Dynamical tidal Love numbers , k,,~ O for dynamical
gravitational deformations (w ~ 0)
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Tidal deformations of BHs

Static tidal Love numbers , k,, =0 for static gravitational
deformations (w = 0)

Dynamical tidal Love numbers , k,,~ O for dynamical
gravitational deformations (w ~ 0)
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An important observation is that the tidal response coefficients, first identified by Love, k, can
be extracted directly from the solutions of the wave equation for all fields (integer spin fields) to
all orders in the frequency, including static (w = 0) and dynamical (w ~ 0) responses.

The gravitational tidal coefficients, km, describe the tidal response of a rigid object e.g. star, planet or
black hole.

k‘em(w) = H,gm(w) + iIng(w) .

Conservative effects Dissihative effects

or Love numbers
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Static Love Numbers for Kerr BHs

Kerr BH static tidal deformation coefficients defined _by _

) N\ (1420
Ry(r) — & 1t (1 % (—) kem) ,
T—00 s

ktm(w = 0) = kgm(w = 0) + i vgm(w = 0),
where

Static Love Numbers ~ "em(@ =0) = 0,

(7 — ¢ , e\ (1420
Static Dissipation Coeff. ~ vem(w =0) = (—1)*"'my (f;l; +)!1(ﬁ(253! (H(n2 +4m272)) (;)

n=1
Love Number vanishes, dissipation does not.

Is this a realization of something more fundamental?
Yes: symmetries. In that case we could observe it in the GW data.
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Dissipative Tidal Coefficients for Kerr BH

—Im[K; ]
0.35 o Figure 1: Visualization of the response coefficients A" for Kerr black holes (3.11) (in units
¢ of (ry/(2M))1*2%) as a function of the multipole moments £ for various values of the Kerr
L black hole spin J = aM. The real part of the coefficients vanish Re(AX*™) = 0, leading
0'30-_ to vanishing static Love numbers. The non trivial dissipation coeflicients, defined as the
imaginary part of the response coefficients Im(AE*™") = u),,(w = 0), are represented here.
0.25: Choosing a fixed value of the multipole moment [, as the Kerr black hole spin increases,
[ with rotational parameter ¢ = 0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8 (from lightblue to purple or
0.20 - upwards), with fixed mass M = 1, s = 0 and m = 1, the dissipation parameters becomes
larger. The behavior changes as one compares the dissipation coefficients fixing all values
015 L ! but ¢; for increasing multipole value £ the dissipation decreases.
0.10 - °
: [
0.05 ¢
L )
0.00 - I " . |
1 2 3
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Hidden symmerties for vanishing Love numbers for Kerr BHs

Pirsa: 24020056

SL.R) x U(1)
arXiv:2209.02091 [hep-th]

S0(4.2)
arXiv:2203.08832 [hep-th]

)  |Love Symmetry

gy  Starobisnky Symmetry

Dynamical Tidal Coefficients from
Starobinsky symmetry

wrir _ T2 DI+ 8- )T+ £+ 2Q) (s —7- i
fm T T2+ 1) T (=€ — s)T(—£ + 2iQ) (r+ + r,)

Q=Q-Mu
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Hidden symmerties for vanishing Love numbers for Kerr BHs

Dynamical Tidal Coefficients from
SL(2,R) x U(1) =P Love Symmetry Starobinsky symmetry
arXiv:2209.02091 [hep-th]

KEIT = I'(—2¢—1)I(1 + £ —s)[(1 + £+ 2iQ) (L = ?,_)mw

T(20 + 1)T(—€ — s)T(—£ +2iQ) \rj +r_
_ S0(6.2) =y Starobisnky Symmetry .
arXiv:2203.08832 [hep-th] Gy
. _ M2 -1 +v—s—2Mw) T (1+v+20Q) [ A
Low frequency solutions kmé) = =T DTy —3 ~5Ma) [ ey £ 0) [1 200 log (—T ﬂ
Mano and E. Takasugi arXiv:gr-qc/9603020 [gr-qc] ry —r_\ 2 ;
Dubowsky et al arXiv:2209.02091 [hep-th]. X(1+Agm w) (mr_) 104
where
Q= . 2&1 (Mw —romf),
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One possibility to compute the Love numbers for Kerr is to work in a regime where

wM <L 1, wr KL 1.

Such that the scalar/ Teukolsky’s equation becomes

SL(2.R) x SL(2.R) (2Mwry — ts(ry —r_) — a'rr.lu)2 (2Mwr_ + Ls(ry —r_) — am)2 O
Hidden Symmetry ["’*‘“A‘f”r T T ooy Kes|[Ra=0142)
1 : (m + s cos #)? B
[m@g (SlIl 989) — .y -+ Kg’5:| 83(6') =10

Spheroidal eigenvalues

Kis=U—5)(f+s+1)+s.
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d?w

dw SL(Z.R) x SLZR)
Teukolsky’s radial equatio - — = = = 4 '
ukolsky’s radial equ z(1-2) T2 +[c—(a+b+1)2] = abw=0 Hidden Symmetry
The solution takes the form
Ry(z) = (1-2P2%(c1F[a,b,¢;2]+ 22" Fla—c+1,b—c+1,2—¢2]),
Boundary Conditions
Ingoing b.c.
on the BH horizon Analitycal continuation
___________________________ - = oo

A T‘(u—l—h—k) it SO0 o
Lo\ i ()= /2 R—6 e ) 1o ) -
R = (%) +_ (e (4.10) - g T(a— k)L'(b - k) /
F(1+E—iw.l+f—2iﬂdw—s,l_i 4Mr, (w—m!l)—s;r_r+) )
A T T AM

(Mw — rymfl), b=1+¢-2iMw-—s,
rL—T_

Generic dimensionless tidal coefficient
B [(a)T'(b) log [T+ ==
" Tk+1)C(a—kTb-Fk o\ r J°

kgm (w)
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Tidal coefficients for dynamical external gravitational sources

r (1 +8— i M (Mw — r+mﬂ)) T(1+¢— 2%Mw—s)

kgm ((.!)) =

(204 1)!T(20 + 1)T (—e — i M (M — 'r+mQ)) [(—f — 2iMw — 3)
Ty —r_ (@4:26) T T
() (M) (
ﬁ ( 2, 16M?*(Mw — r+mQ)2)]

AMi(Mw — rym$)(2iMw + s)

26+ DIT20+1) (ry — - e (ry —r-)?
£ , , r—r_ (1+2¢) "
X 1;[1(73, + (2Mw —is)?) (u—l—'r_) log ('r+—fr_) . (
y=af(ry —7r_)
Maria ] Rodriguez
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Kerr Dynamical Tidal Coefficients

0o oc _ (1+21) .
ki (w) = Y ki) @™ =3 (k™ +iv™) (” — T‘) @ * Dynamical Love numbers for Kerr are
T‘ T_ - -
=l =t ' generically not zero at all orders in the

here the first few orders yield s e .
FEEEE R frequency w and exhibit logarithmic running,

gy (=Ll 48)IT(1+1—8)T (141 + 2miy) ry—T_ )
R = @+ D)IT@ + )T (= + 2miv) log( . )QM“
(=1)°(L+ 8)! (I — 8)!

@+ D! @)

= v® 4Mlog (r+ — T_)
L " * Kerr black holes do not universally behave

m(#}(—i + 2imy) — (1 + 1+ 2imy)), like rigidly rotating dissipative spheres

4M? 1 E 2mry
= —xM 2 e
- (2mv+ Z(2m)2+(n2))

n=1

v@ = kWoM@A+14+s) -1 +1—3))
25—1 1

L ) s *No frequency-dependent dissipation in Kerr by
) 11" +4m7%) scalar perturbations (s = 0)

n=1

4M m -y log (T"'

-
r

K@ — O

* Agreement with low frenquency results

— O S
= K2M ;
ngﬂnJré“rlfs
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Schwarzschild Dynamical Tidal Coefficients

2—0,ry >2M andr_ — 0
T(1+£—s— 2iMw)D(1 + £ — 2iMuw) oM
20+ 1)IT(20 + 1) T(— — 5 — 2iMw) [(—£ — 2iMw) ()

2iMw s —AM*?) |71 o ao o | 12 o)
= ((;g —:JI;P(% +ui)) LH (7% + 4M°w )] [H(n + (2Mw — is) )] log (ﬁ) :

j=1 n=1

kSeh (i) = (4.27)

r

- E-e—eeE+2) |, .. (2M \
F3?(@) {_ 2 (1 +20)1(2¢ - 1) ﬂ'“’ log (T) +OW).
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CFT Interpretation for Kerr tidal coefficients

The dynamical Love numbers measure the response to an incoming wave by the near region black hole, it is

proportional to a two-point function in the CFT
GR(w) (o] k‘gm(w).

To compare our results with the CFT we can write the Love numbers in terms of a dual CFT

T (1+hp—i528) T(1+hy —i32%)

2nTyL

Ty —T-
kem(wWr,wp) = log ( )
(20 +1)120T (—hR - zﬂ_) D(—hy, — i) r

2nTR 2nTy,

2 2
R Wr ; wr, 2 Wgr 2 Wy,
= sinh (QTR) sinh (QTL) (hR—i- (ZWTR) ) (hL + (ZWTL) ) \f.3)
2 r
Tl ha—itl = 1 (T*""‘)
27['TL

(hR + hr + l)T(hR + hL)|
(wr,wr) = (2M?*w/a,wr, —m)

g (hR_i(zj;R)) |

(TL,TR) — (m ﬁ),

where
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Tidal Coefficients for mor general D=4 BHs

I‘(1+€—z’ 4t (Mw—r+mﬂ)) ['(1+£—2iMw — s)

r+—r-

kgm (w) =

- Z?‘+—T_
(1+2¢)
Ty —T_ Ty —7T_
X ( 2 ) log ( a2 ) (¢
(T 55

Kerr-NUT black holes

(204 1)IT(2¢ +1)T (—e AM (M — T+mQ)) D(—f — 2iMw — s)

ry = 15TV = M 4+ VM2 + N2 — g2,

Kerr-MOG black hole of the Scalar Tensor Vector Gravity (STVG),

re = M98 =r(1+a)+ /M2(1 +a) — a2,
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Tidal Coefficients for Higher Dimensional Bhs

Black Hole

D dimensions

-+

Maria ] Rodriguez
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Contributions

— Reviewed how tidal deformations for BHs are defined in General Relativity

— Offered steps toward a better understanding of the computation of
static Love numbers, and discussed the vanishing controversies for BHs

— Determined the dynamical tidal coefficients for Kerr through the study of the tidal deformations
of Kerr BHs in dynamical external fields

— Argued that the Love numbers for Kerr have an approximate SL(2,R) x SL(2,R) hidden symmetry
and match both, the low frequency regimes and Post-Newtonian computations.

Maria ] Rodriguez

Pirsa: 24020056 Page 38/40



Contributions

— Reviewed how tidal deformations for BHs are defined in General Relativity

— Offered steps toward a better understanding of the computation of
static Love numbers, and discussed the vanishing controversies for BHs

— Determined the dynamical tidal coefficients for Kerr through the study of the tidal deformations
of Kerr BHs in dynamical external fields

— Argued that the Love numbers for Kerr have an approximate SL(2,R) x SL(2,R) hidden symmetry
and match both, the low frequency regimes and Post-Newtonian computations.

Tidal squeezing in the farm.
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One possibility to compute the Love numbers for Kerr is to work in a regime where

wM <L 1, wr KL 1.

Such that the scalar/ Teukolsky’s equation becomes

SL(2.R) x SL(2.R) (2Mwry — ts(ry —r_) — a’m)2 (2Mwr_ + Ls(ry —r_) — a’m)2 . s
Hidden Symmetry ["’*‘“A‘f”r T T ooy Kes|Ra=042)
1 : (m + s cos #)? B
[m@g (SlIl 989) — ) -+ Kg’5:| 83(6') =) .

Spheroidal eigenvalues

Kis=0U—5)(f+s+1)+s.
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