Title: Relating Wigner's Friend Scenarios to Nonclassical Causal Compatibility, Monogamy Relations, and Fine Tuning
Speakers: YÃ $\neg 1 \tilde{A} ` \hat{A}$ YÄ«ng
Series: Quantum Foundations
Date: February 08, 2024-11:00 AM
URL: https://pirsa.org/24020054
Abstract: Nonclassical causal modeling was developed in order to explain violations of Bell inequalities while adhering to relativistic causal structure and faithfulness -- that is, avoiding fine-tuned causal explanations. Recently, a no-go theorem stronger than Bell's theorem has been derived, based on extensions of Wigner's friend thought experiment: the Local Friendliness (LF) no-go theorem. Here we show that the LF no-go theorem poses formidable challenges for the field of causal modeling, even when nonclassical and/or cyclic causal explanations are considered. We first recast the LF inequalities, one of the key elements of the LF no-go theorem, as special cases of monogamy relations stemming from a statistical marginal problem; we then further recast LF inequalities as causal compatibility inequalities stemming from a nonclassical causal marginal problem, for a causal structure implied by well-motivated causal-metaphysical assumptions. We find that the LF inequalities emerge from the causal modeling perspective even when allowing the latent causes of observed events to admit post-quantum descriptions, such as Generalised Probabilistic Theories (GPT) or even more exotic theories. We further prove that no nonclassical causal model can explain violations of LF inequalities without violating the No Fine-Tuning principle. Finally, we note that these obstacles cannot be overcome even if one were to appeal to cyclic causal models.

Zoom link

Nonclassical causal models and Wigner's Friend experiments
 Yilè Yīng

with Marina Maciel Ansanelli, Andrea Di Biagio, Elie Wolfe, Eric Gama Cavalcanti arXiv:2309.12987

Classical causal models and Bell experiments

Explain correlations through causation

Classical Causal Models

Causal structure:

- Directed Acyclic Graph (DAG)
- Nodes: random variables
- Arrows: cause-effect relations

Exercise Health

Classical causal models and Bell experiments

Causal structure:

- Directed Acyclic Graph (DAG)

Classical causal models and Bell experiments

Causal structure:

- Directed Acyclic Graph (DAG)

Classical Causal Models

Causal structure:

Compatible probabilities

- The d-separation rule:

Bell inequalities on $\mathrm{P}(\mathrm{AB} \mid \mathrm{XY})$

Problems with classical causal explanations

Superluminality

Superdeterminism

Problems with classical causal explanations

Need fine-tuning to explain no-superluminal-signaling

$$
\begin{aligned}
& P(A \mid X Y)=P(A \mid X) \\
& P(B \mid X Y)=P(B \mid Y)
\end{aligned}
$$

C. J. Wood and R. W. Spekkens, New Journal of Physics, 17, 082012.

No Fine-tuning: the converse of the d-separation rule

```
conditional independence }=>\mathrm{ {
```

no
superluminal
signaling

$$
\begin{aligned}
& P(A \mid X Y)=P(A \mid X) \\
& P(B \mid X Y)=P(B \mid Y)
\end{aligned}
$$

$A \perp_{d} Y \mid X$
$B \perp_{d} X \mid Y$

No Fine-tuning: the converse of the d-separation rule

```
conditional independence }=>\mathrm{ d-separation relation
```

no
superluminal
signaling

$$
\begin{aligned}
& P(A \mid X Y)=P(A \mid X) \\
& P(B \mid X Y)=P(B \mid Y)
\end{aligned}
$$

$A \perp_{d} Y \mid X$
$B \perp_{d} X \mid Y$

Problems with classical causal explanations

Superluminality

Retrocausality

Superdeterminism

Need fine-tuning to explain no-superluminal-signaling

Nonclassical Causal Models

Causal structure:

Compatible probabilities

- The d-separation rule:

$$
\begin{array}{cc}
\begin{array}{c}
\text { d-separation relation } \\
\text { of the graph }
\end{array} & \Rightarrow \begin{array}{c}
\text { (conditional) independence } \\
\text { in the compatible } \mathrm{P}
\end{array} \\
\Lambda \perp_{d} X Y & P(\Lambda X Y)=P(\Lambda) P(X Y) \\
A X \perp_{d} B Y \mid \Lambda & P(A X B Y \mid \Lambda)=P(A X \mid \Lambda) P(B Y \mid \Lambda)
\end{array}
$$

Bell inequalities on $\mathrm{P}(\mathrm{AB} \mid \mathrm{XY})$

Quantum Causal Models

Causal structure:

Compatible probabilities

- The d-separation rule:

Quantum bound on $\mathrm{P}(\mathrm{AB} \mid \mathrm{XY})$

(e.g., Tsirelson's bound for CHSH)

Generalized Probabilistic Theory
 GPT Causal Models

Causal structure:

Compatible probabilities

- The d-separation rule:

No-superluminal-signaling bound on $\mathrm{P}(\mathrm{AB} \mid \mathrm{XY})$

Generalized Probabilistic Theory
 GPT Causal Models

Causal structure:

Compatible probabilities

- The d-separation rule for observed nodes

$$
\begin{array}{ll}
A \perp_{d} Y \mid X & \Rightarrow P(A \mid X Y)=P(A \mid X) \\
B \perp_{d} X \mid Y & \Rightarrow P(B \mid X Y)=P(B \mid Y)
\end{array}
$$

No-superluminal-signaling bound on $\mathrm{P}(\mathrm{AB} \mid \mathrm{XY})$
J. Henson, R. Lal, and M. F. Pusey, New Journal of Physics 16, 113043 (2014)

However...here comes Wigner’s friend

D. Schmid, Y. Ying, and M. Leifer, A review and analysis of six extended Wigner's friend arguments (2023), arXiv:2308.16220

Local Friendliness (LF) experiment

Bong et al, Nature Physics 16, 1199 (2020)

Local Friendliness (LF) experiment

Bong et al, Nature Physics 16, 1199 (2020)

Local Friendliness (LF) experiment

Bong et al, Nature Physics 16, 1199 (2020)

Generalized Probabilistic Theory
 GPT Causal Models

Causal structure:

Compatible probabilities

- The d-separation rule for observed nodes

$$
\begin{array}{ll}
A C \perp_{d} Y \mid X & \Rightarrow P(A C \mid X Y)=P(A \mid X) \\
B C \perp_{d} X \mid Y & \Rightarrow P(B C \mid X Y)=P(B \mid Y)
\end{array}
$$

Generalized Probabilistic Theory
 GPT Causal Models

Causal structure:

Compatible probabilities

- The d-separation rule for observed nodes

$$
\begin{array}{ll}
A C \perp_{d} Y \mid X & \Rightarrow P(A C \mid X Y)=P(A \mid X) \\
B C \perp_{d} X \mid Y & \Rightarrow P(B C \mid X Y)=P(B \mid Y)
\end{array}
$$

Monogamy relations on $\mathrm{P}(\mathrm{ABC\mid XY})$!
$P(A B \mid X Y), P(A C \mid X Y)$ and $P(B C \mid X Y)$ constrain each other
R. Augusiak, M. Demianowicz, M. Pawlowski, J. Tura, and A. Acin, Physical Review A 90, 052323 (2014)

Monogamy relations on $\mathrm{P}(\mathrm{abc} \mid \mathrm{xy})$

Example:

$$
\begin{aligned}
& \leq 1 \\
& \mathrm{CHSH}_{P(A B \mid X Y)} \\
& \frac{1}{4}\left[\sum_{A=B} P(A B \mid 00)+\sum_{A=B} P(A B \mid 01)+\sum_{A=B} P(A B \mid 1\right. \\
& X=0 \Rightarrow \mathrm{~A}=\mathrm{C} \Rightarrow \mathrm{CHSH}_{P(A B \mid X Y)} \leq \frac{3}{4}
\end{aligned}
$$

$$
\frac{1}{4}\left[\sum_{A=B} P(A B \mid 00)+\sum_{A=B} P(A B \mid 01)+\sum_{A=B} P(A B \mid 10)+\sum_{A \neq B} P(A B \mid 11)\right]
$$

Local Friendliness (LF) inequalities

Local Friendliness (LF) Inequalities

Monogamy relations

```
X=0 = A=C
```

In general, LF inequalities are strictly weaker than Bell inequalities.

In the binary case, they coincide: $\operatorname{CHSH}_{P(A B \mid X Y)} \leq \frac{3}{4}$

Quantum violations of LF inequalities

Bong et al, Nature Physics 16, 1199 (2020)
H. M. Wiseman, E. G. Cavalcanti, and E. G. Rieffel, Quantum 7, 1112 (2023)

Quantum violations of LF inequalities

e.g., $\operatorname{CHSH}_{P(A B \mid X Y)} \leq \frac{3}{4}$

Bong et al, Nature Physics 16, 1199 (2020)
H. M. Wiseman, E. G. Cavalcanti, and E. G. Rieffel, Quantum 7, 1112 (2023)

Any d-sep causal model with the LF DAG cannot explain violations of LF inequalities!

$$
X=0 \Rightarrow A=C
$$

d-separation rule
for observed nodes

Problems with d-sep causal explanations

Need fine-tuning to explain no-superluminal/retro-signaling!

$$
\begin{aligned}
& P(A \mid X Y)=P(A \mid X) \\
& P(B \mid X Y)=P(B \mid Y) \\
& P(C \mid X Y)=P(C)
\end{aligned}
$$

Problems with d-sep causal explanations

Need fine-tuning to explain no-superluminal/retro-signaling!

$$
\begin{aligned}
& P(A \mid X Y)=P(A \mid X) \\
& P(B \mid X Y)=P(B \mid Y) \\
& P(C \mid X Y)=P(C)
\end{aligned}
$$

Any d-sep causal model must be fined-tuned to explain violations of LF inequalities!

How about cyclic causal models?

Any compositional causal model must be finedtuned to explain violations of LF inequalities!

even if it is cyclic and violates the d-sep rule for observed events

What's next?

What's next?

- Does P(ABCXY) really exist?
- Make C less "real" (e.g., Relational QM, QBism)? Or many-worlds?

What's next?

- Does $P(A B C X Y)$ really exist?

Keep the causal structure intact Update the notion of causality

What's next?

- Does $P(A B C X Y)$ really exist?

Keep the causal structure intact Update notions of causality and inference

What's next?

- Does $P(A B C X Y)$ really exist?

Keep the causal structure intact Update notions of causality and inference

What's next?

- Does $P(A B C X Y)$ really exist?

Keep the causal structure intact Update the notion of causality

