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i Touch Tones Enabled

ROADMAP

Today: Review of Manifold Basics. it is possible | will go a bit faster with slides, so

please take a look at hitps//pirsa.org/20010045 to review the material if you need.
Wednesday / Friday: More on Manifolds — Forms, Lie Derivative,
Covariant Derivative, Curvature and Cartan.

Down the Road: Black Holes, Causal Structure, Actions &
Thermodynamics

Advanced Topics: Submanifolds, Walls & Branes, Pevturbation Theory,
Analog Gravity.
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Conventions

A trap for the unwary!
Signature +, -, —, — [hep-ph] ¢ = 1 [relativist's]

Curvature:

abcd 2 rt?[d ]

ach

So the Einstein equations are:
Rab ;Hgab = 8 GTap

Typically a, b.. are spacetime indices, but need not be a co-ordinate
basis, ., v.. will usually be a co-ordinate basis, /, /.. are usually space
indices, and A, B... submanifold indices.
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Manifolds-1

l.e. we can cover M with a collection of charts (open sets together with

a map to flat R").
M =UUY
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Manifolds-2

These maps label the points locally - co-ordinates - and where diffe§
charts overlap we ask that the transformation between the two sets’

co-ordinates is infinitely differentiable.

This gives a C* manifold, and the set of charts is called an ATLAS.
We transport structure from R"” to the manifold, building up our
understanding of geometry.
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Functions

A C* function on M is a map

f- M—-R

that is locally €™ in all charts. The set of all C*™ functions is denoted
C>*(M).
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Curves

A C™ curve is a map
vy:R—-> M

such that the image in a local chart is infinitely differentiable.
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Curves

Examples are the worldline of an
observer,

XFH(t) = (&, x(1))

Or the circle:

S':[0,27] - R®

t v (cost,sint)

Note that the curve is the path-plus-paramelrisation, so the same path
traversed at a different rate is a different curve.

Pirsa: 24010048 Page 9/21



Tangent Vectors

curve at a point P

T: C¥(M) - C®(M)
df .
f dt vieC (M)

Here, for f € C™(M), f(t) = fo~(t)is a real
function, so is differentiable
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Tangent Space

These operators form a vector space at P, the Tangent Space Tp(.

We can rescale vectors by changing the parametrisation of the cur ‘

va(t) = y(t/7\) takes I T —= AT

and to add we go to a local chart and construct a “composite curve”:

i Ji i
Xy = X{ + X3

df df Y s Y. (&)
. \
T+S.fr—+dt +ds | 5 T

T

Vf € C®(M)
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Tangent Bundle

Note that Tp(M) is a distinct space from M, and is only defined at
We can defined tangent spaces at all points of M, and the collection of
these is called the Tangent Bundle T(M).

For example, the tangent plane to
the North Pole of the sphere is a
plane, R?, and we can directly vi-
sualise this as a plane sitting on top
of the sphere.
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Covectors

These are defined via maps from the tangent space to the reals (think
of the dot-product).

w: Tp(M) >R

Vi w(v) or (w|v)

The set of all such w also forms a vector space at P and is called the

cotangent or dual space at P, Tp(M)
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Bases

each. The most common basis is the co-ordinate basis

If = df ot

{2-4 /]f}(’_(}(’ C,'L‘?—f\..u’s t'?

4= (LN I ('.'l'"(j
/U l(r‘(l) f lpxaxapAd-,

Here, the operators 9/0X'* are the co-ordinate basis vectors.
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Components

We call the general derivatives of the coordinates of « (the curve
defining T) the components of T.

L dx" 2 - T" 2
A 3.4 - Xt
/ A

At
o ) /XJ"I”'E "
VECTOR (OoMPoNENTS S n
KASIS

( gromabrc) ( scadars)

VierTe e

Similarly, we can define the covector co-ordinate basis and covector
components:
W o= WudXx®

N\ i
/ L basts cneclsy

CL rnp ru..f!tr
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General Basis

It is often useful to use non-coordinate bases, in which case, the

components of a vector/covector may not be directly related to a

particular direction. A general basis can be written in terms of the
1

coordinate basis:

e : P

‘wa
/T

A 2 x™
az [—-nNn. V(& LY V!C(A-L(n

the most common of which is the orthonormal basis (which requires a
metric!) when
g(eae eb) = Tlab
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Abstract Index Notation

Introduced by Penrose, to “legitimise” the working methods of

physicists!
We often write T# to denote a vector, and then execute geometric

operations, such as covariant derivative, on this “vector”:

VuT" =8, TV + LT

Jt

However, strictly, T/ are the components of the (geometric) vector T,

and are therefore scalars.
The vector is the geometric T, and the correct expression is:

VT = V(T%,) = (VT%e, + T4(Ve,)
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This method of using the index notation for meaning a geometric
object is the Abstract Index Notation. Once we start to do calculation
in gravity, we will revert to this, but for the first part of the course we will
be building our differential geometry toolkit, so will be using geometric
notation.

{T The geometric object

T2 Components - scalars!

BE CAREFUL!
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Co- and Contra-variant

Vectors and co-vector components transform in the opposite way:

;X"
TY = 5 X" T CONTRAVARIANT

(

oxX"

7“”

oxX"

wherein we quickly see the problem of d[ifferentiating vectors:

Wy i COVARIANT

T 1 ayr” 9 Y X
ot ax" o [dx T,.}

axv  axX" ax"' |ox
ax" axr oT" + oxX" R X
OXT axm oxr - OXT 9xX ox™

v x
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Co- and Contra-variant

Vectors and co-vector components transform in the opposite way:

,OX”
™ = 5 X" T"  CONTRAVARIANT
(
X"
ax"

wherein we quickly see the problem ofidifferentiating vectors:

Wy Wy COVARIANT

PV ) G [oxu T}

axv  aX" gx ax"
ox" axr aT"  ax"  9RX»
X7 ax ox T OXT oxr oxm”

v x
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Lie Bracket

Consider the commutator of two vectors:

0 , Of 0 , Of
(uv — vu) = ¢/ v -vi—|u
| —

ox XM axhH oaxh
VECTOR

(ui‘ av” h f’)u") of

Jxh axit ] oxv

LIF ARACKFT

EX: Check what happens under a coordinate transformation

W OV OxV i 92 xv

ut v”

‘ u ’ I i/ ’
ox ox"™ ox" X" x"

and confirm that the bracket is indeed covariant.
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