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Global structures in 4d QFT

Consider a QFT in four space-time dimensions.

Our question today: What is the global form of the QFT?

A QFT with a specific choice of global structure is called an absolute theory.

Example (gauge theory): pure SU (2) versus pure SO(3) Yang-Mills theory in 4d. The

Lagrangian is the same in both cases:

S d*z/g trFu, F"

iy

and all local observables are the same, but the two theories differ through their spectrum
of line operators.

Alternatively, the path integral over arbitrary My distinguishes between them.
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Global structures in QFT

In general, we want to have a completely precise understanding of the symmetries of any
given QFT. This is an ongoing task for the hep-th community. [cite here: everyone]

See: generalised symmetries, categorical symmetries,...

For QFTs in 4d, the global form of the theory is determined by a maximal set of

mutually—local line operators. [Aharony, Seiberg, Tachikawa, 2013]

For instance, consider the pure su(2) gauge theory:
» Wilson line in irrep R of dimension A, + 1:

W = Trog Pe'J A

» 't Hooft line H corresponding to monopole of
charge A, € Z.

Generic lines are not mutually local:

WH = (-1)**HW
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4d N = 2 SQFTs: Global structures from the Coulomb branch

Let us consider 4d N = 2 supersymmetric theories (8 supercharges).

4d N =2 SQFT have a Coulomb branch (CB),

I Me 2 C" 2 SpecClu, -+ ,ur| ,

with » photons (and its ' = 2 superpartners) at low energy. The integer r is the rank of
the SQFT. The CB parameters u are the VEVs of some specific half-BPS operators.

Due to supersymmetry, the low-energy physics is determined by a single locally
holomorphic function, F(a), the prepotential. Here a denote the scalar partners to the
low-energy photons.

[Seiberg, Witten, 1994] famously solved for the prepotential exactly — that is, non-perturbatively
— for the pure N = 2 SU(2) gauge theory (and for SQCD). This is the celebrated
Seiberg-Witten solution.

In this talk, we wish to explain how the spectrum of lines is encoded into the
Seiberg-Witten solution — all in the special case r = 1.

Page 5/46



Seiberg-Witten theory and the choice of gauge group -
In some sense, we simply want to read the following papers together:
' Seiberg, Witten, 1994]
» Seiberg-Witten theory. [Seiberg
» Reading between the lines.

>

[Aharony, Seiberg, Tachikawa, 2013]

Ar
Reading between the lines of
four-dimensional gauge theories

Ofer Aharony!?, Nathan Seiberg? and Yuji Tachikawa?

'"Department of Particle Physics and Astrophysics, Welzmann Institute of Sclence,
Rehovot 76100, Tsrael

? School of Natural Sciences, Institute for Advanced Study, Princeton, NJ, 08540, USA

¥ Department of Physics, University of Tokya, 7-3-1 Hongo, Tokya, 113-0033, Japan and
IPMU, University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Starting with a choice of a gauge group in four dimensions, there is often freedom in
the choice of magnetic and dyonic line operators. Different consistent choices of these
operators correspond to distinet physical theories, with the same correlation functions of

local operators in R®, In some cases these choices are permuted by shifting the d-angle
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by 27, In other cases they arc labeled by new discrete 0-like parameters.  Using this
understanding we gain now insight into the dynamics of four-dimensional gauge theories
and their phases. The existence of these distinct theories clarifies a number of issues
in clectric/magnetic dualities of supersymmetric gauge theories, both for the conformal

N = 4 theories and for the low-cnergy dualities of A7 — 1 theories.
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Seiberg-Witten theory and the choice of gauge group

The Seiberg-Witten solution packages the low-energy effective action of the SU(2)
N = 2 SYM theory in terms the Seiberg-Witten curve, an auxiliary mathematical
object.

e

(‘\”‘_‘*v\ Basic questions:
— | » The SU(2) gauge theory has a one-form symmetry

under which Wilson lines are charged:

u zM oW (—)rew

Can we see this from the SW curve?
» |If we gauge Z[ll, we obtain the gauge group:
SO(3) = SU(2)/Z»

How do gauge L[;} at the level of the SW curve?
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Seiberg-Witten theory and the choice of gauge group

Short answer: ‘consider the rational sections’!

I

i

SO(3)_

We will need to distinguish between relative and absolute SW curves. This clarifies the
status of some of the curves first discussed in [Seiberg, Witten, 1994].
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Reading between the sections in pure su(2) A/ =2 SYM
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Reading between the lines

Consider the case of su(2) gauge theories.
[Gaiotto, Moore, Neitzke, 2010; Aharony, Seiberg, Tachikawa, 2013]

Given the su(2) Lie algebra, we have two possible compact Lie groups, SU(2) or SO(3).
They are related as:
Zy — SU(2) — SO(3)

where Z, = Z(SU(2)), the center. This is simply {1, —1}.

For any 4d gauge theory with Lie algebra g, consider the possible dyonic lines. They
have electromagnetic charges determined by magnetic and electric weights:

(/\m, Ae) € Amw &b Aw

For g = su(2), we have the electric weight lattices:

AP C AT = AP c e

and the magnetic weight lattices:
£2 Ana' = AR O An®

Here t = u(1) is the Cartan subalgebra.
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Reading between the lines

To have a consistent QFT, we need to have a spectrum of lines that are mutually local:

{(Am, Ac), (Amm, AL)) = 0 mod 2

There are three solutions, corresponding to a choice of gauge group G:

SU(2) C A E€E2Z, A €L,
SO3)+ : A €Z, N €2Z,
SOB)- AmyAe €Z, Am+ A €2Z .

The SO(3)+ theories differ only by a shift of the 6 angle:
S0(3)% = SO(3)5™"

In summary, a choice of lines is the same as a choice for (G. This is the global structure.
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Reading between the lines

In pure gauge theories (or with adjoint matter only, like A" = 2 SYM), we can consider
the defect group I of su(2) lines that cannot be screened by dynamical particles. These
are essentially the charges A mod 2:

(zmyzc) = ZQ @ZQ =D
Choosing a consistent set of lines is equivalent to choosing a ‘Lagrangian subgroup’
Zo C D

Here we have the possible Z2's generated by (0,1), (1,0) or (1, 1), respectively.

These unscreened lines are charged under a one-form symmetry Z[zl]:

SU(2) . Wilson line (0, 1), electric ZL" + 'center symmetry’
SO3)+ : 't Hooft line (1,0), magnetic 2[21] <+ 'magnetic one-form symmetry'
SO(3)- : dyonic line (1,1), diagonal %gl] .
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elber%Witten curves
In SW theory, we are interested in the LEEA on the Coulomb branch parameterised by

u = (Tx(2?))

The low-energy dynamics is written in terms of a low-energy photon a and its magnetic
dual ap. Together they determine the infrared gauge coupling 7 as a function of u:

Gi . 3(1,9_82]:
da ’ * 80  0a

ap =

» The SW solution identifies the ‘physical periods’ (ap,a)
as periods of an elliptic curve E:

GD=/ Asw a:/ Asw
TB YA

The SW differential Asw satisfies d'}iw = %w

» Hence, the IR gauge coupling 7 is identified with the
modular parameter of F,:

da Wa

dap _ wp (da_D_wD da_w_a)

du ~ 21 du 27
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Mathematical intermezzo: Elliptic curves
The SW geometry is the total space of the elliptic fibration:

E -S> P ={u}
It is a rational elliptic surface (RES), which we can write in Weierstrass normal form:

dx
v’ = 42° — ga(w)z — ga(u) , 92,93 € C(u) , w=",

1

The generic fiber is a smooth elliptic curve E,,:

¢ E~C/A, Aw.Z+wpk

For z € C, we have a point on the elliptic curve:
| (z,9) = (p(2), 9'(2))
L
Wa

The RES must also have singular fibers at points on P! such that:

Au) = g2(u)® — 27gs(u)® =0
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Mathematical intermezzo: Elliptic curves
Allowed singular fibers of RES follow the Kodaira classification. There are 20 possibilities:

[Persson, 1990; Miranda, 1990]
L, -, Iy, Iy,--- Iy, II, IIT, IV II", IIT", IV".
In the Weierstrass model, these are ADE singularities associated to subgroups of FEj:

In > A'n,—l = SU.('H.) ’
I} <  Dits=s0(2k+8),

1r* > es .

We can focus here on the I, singularities. Physically, an I,, singularity on the CB
corresponds to a low-energy U(1) gauge theory with massless hypermultiplets and

[B-function coefficient:

Two examples:

U(1) & n electrons of charge 1 or U(1) @ 1 electrons of charge v/n ,

deformable versus undeformable singularity. This will be important below.
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Mathematical intermezzo: Rational sections

A classic problem in the theory of elliptic curves is to find the rational points. E.g.:

129 _@) (164323 _132469670) N
100" 500/ '\ 29241 " 5000211 '

' =42 - 8, (x,y) = (3,10) (

Here, we have g2, g3 € C(u), so we are looking for solutions:
P = (z(u),y(u)) € C(u)’

These are the rational sections of the RES. The Mordell-Weil theorem tells us that the
rational points form a finitely generated abelian group:

B(S) = E(C(u)) = 7™ @ Iy, &--- L, .

Today we will focus our attention on the torsion subgroup:

q)tor = ZN]_ @D - 'ZN.R-

generated by points of finite order. For a N-torsion section:

NP=P+---+P=0=0
———

N times
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Mathematical intermezzo: Rational sections

For most of what follows, we can focus on 2-torsion sections, 2P = (). These are:

3
P = (20,0) , r=1xy solves f(x) E4x13 — g2 — g3 = 41_[(:1:-:1:1-) =0

i=1

and there are either zero, one or three rational solutions. On the smooth fiber, they are
the obvious order-2 points:

Pirsa: 23120053 Page 17/46



Pirsa: 23120053
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Mathematical intermezzo: lsogenies between elliptic curves

An isogeny is an homomorphism of elliptic curves:

Yo : E— E'

The kernel of ¢, is finite. At the level of complex tori, C/A, we have 1,(0) = 0, hence:

I
Yoz +L)=az+ L, ker(o) = L' /oL
Here o € C* gives a homothety (rescaling).

Fact: Any N-torsion section induces an isogeny, which extends to the full RES S,
including a well-understood action on its singular fibers. For a Zs torsion, for instance:

07//% = W’Dgwp.o )

0
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BPS states and central charge

Back to physics. The last bit that we need to recall is that the Coulomb-branch theory
admits massive one-particle excitations with dyonic charges. For the SU(2) gauge theory:

v = (m,q) € FSU(Q) cr=z?

Here, we can identify I with the the homology lattice of the generic fiber. Identifying =

with a one-cycle

the Dirac pairing is identify exactly with the homology pairing:
(’h,’)‘z) =miqz —q1mz = [71] : [’72] .
This is the statement that the SW curve is principally polarised. [Argyres, Martone, Ray, 2022]

The central charge of the BPS state is given by:

Z,(u) = map(u) + ga(w)
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SU(2) curve and one-form symmetry

The SU(2) curve is given explicitly by: [Seiberg, Witten, 1994]

SU@2) ﬁ AR gu®  wuA?
)

92 =3 95 T T or T3

with the discriminant:
ASU(Q] :AB(U—AE)(U+A2)

At the singularities at u = +A?, the monopole and dyon become massless. We encode
the Dirac pairing of these light states in a BPS quiver: [Alim et af, 2011]

e = (1,0) o = (~1,2)

The full BPS spectrum is built out of bound states of these two hypermultiplet states.
[SW, 1994; Bilal, Ferrari, 1996] In particular, we see that all one-particle states are of the form:

v =(n,2m) € fSU(g) . n,m € Z

Let us call I'sy(2y the lattice of “allowed charges”.
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SU(2) curve and one-form symmetry

The dyonic charges v = (m, q) are related to the su(2) weights above as

An
2 bl

’w=(m,Q)=(

SU(2) SU(2
)\e) e ASUR g ASVR)
This is the statement that the minimal SU(2) 't Hooft line corresponds to A,

The only BPS line that cannot be screened is the
fundamental Wilson line

YL = (0: 1)

It is charged under the one-form symmetry Zgl).

[del Zotto, Garcia Etxebarria, 2022

75" can be identified with MW group of the SU(2)
SW curve:

P =DPior =22 = Zé” ;

[CC, Magureanu, 2021]
[Cecotti, Caorsi, 2017]
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Aside: Coulomb branch as a modular curve

The Coulomb branch of pure SU(2) is famously a modular curve for the congruence
subgroup ' (4) of PSL(2,7Z).

l.e. there exists a biholomorphism from the u-plane to the 7-plane (mod I'°(4)).

u(r) _ da(r)" + da(7)"

Az 2092 (7)293(7)2
The CB monodromies can be read off from
the cusps:

My—y = STS ',
My—_1 = (T°S)T(T?*S)~ ",
Mo = PT? .

The two SW singularities are ‘of width 1. These are singular fiber ‘of type I;".
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One-form symmetry from rational sections: General claim (I)

Jumping ahead, and extrapolating from this example, we assert the following:

(1) The SW geometry of any absolute rank-one 4d A/ = 2 theory T is given by a principally
polarised RES S. The line lattice of 7 is identified with the homology lattice of E,.

I
(2) Given such a theory, its discrete one-form symmetry I'" is isomorphic to a subgroup
of the torsion part of the MW group of S:

' ®yor(S)

Absolute 4d QFT means a QFT with a maximal consistent choice of lines.

Simple heuristic argument: Put the theory on R® x S*. Then I'!l gives rise to a
0-form symmetry I''®) spontaneously broken on the 3d A = 4 CB. The latter is
essentially the SW geometry itself. [Seiberg, Witten, 1996; Gaiotto, Moore, Neitzke, 2010]

Can be motivated by IIB geometric engineering/mirror symmetry (SW curve as part
of IIB background/ LG model).

We haven't specified how to identify the subgroup, yet! Not all torsion sections are
born equal.
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The relative su(2) curve _
Next, we would like to understand the gauging

SO(3) = SU(2)/z

A natural guess is to look at the isogeny generated by Pz, for the SU(2) theory.

w _\/5 . ESU(2) — Esu(2)

with

ESU(?) = \/§O ESU(Z)/tPZ
2

]

()
Ya

» The periods and coupling are related by:

ab:%ﬁa, a,’:\/ia,

and then the charges are:

(m',q') = (\/ém jiq)

» The rescaling by @ = v/2 is crucial to preserve the Dirac pairing. As a result of this
rescaling, we end up with a non-principally polarised curve.
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The relative su(2) curve

The SW curve we obtain from this isogeny is what we call the relative curve. It reads:

2 3 4
su(2) U 4 su(2) u UA
gs - g + A ’ gSI - "E + 3 3

with the discriminant:
Asu(Q) - Ari (u2 _ A‘i)g .

Now we have to singularities with the massless particles of charge (‘type I2'):

S = VA(1,0) 3p = VA(-1,1)

Here the homology lattice and the charge lattice are related by a factor of v/2:

~ Am Ac =
o () e

2 2

It is only T which is identified with the homology lattice.
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The relative su(2) curve and its modular group

Up to the (crucial) rescaling by v/2, the relative curve is the I'(2) curve of the first SW
paper. Namely, the CB is a modular curve for I'(2). [SW, 1994]

This is the 7/ iplane. The modular function is simply
obtained from the I'°(4) function using:

T =27
The CB monodromies can be read off from the cusps:

My—q = ST?S7'
Mye_; = (T 'S)T*(T'8) !,
Mo = PT? .

Note for the experts: This is the same curve as for SU(2) Ny = 2 but the I3 singularities here
are undeformable. [Aspman, Furrer, Manschot, 2021; CC, Magureanu, 2021]
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Rational sections of the relative su(2) curve

“I)tor = Z? 3%, Z?

generated by P; = (x;,0) with
1 =— ! T2 = < + Afz
1 = 3 2 = 9 )

along any Zy C ®or, we recover absolute curves:

SO(3)+

General claim (I1): The MW torsion of a (mass-deformed) relative curve is identified with

the defect group of the theory:
¢(Smass) =D

The absolute curves are then obtained through isogenies. (‘Reading between the sections.')
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The SO(3)+ curves

Performing the isogeny explicitly, we obtain the curves:
ESO(3)+ — \/50 Eﬁu(?)/tpz ESO(B)_ — \/50 EBu(Q)/tPJ
Py -
They read:

2 2 4 3 242 4
SO(3): _ U~ 5A“u  11A o Tu“A 29uA
92 “ntf ot 9 ot

with the discriminant:

so@y _ 1,2 2\ ( a4
APIIE = oA (wt A7) (uF AF)"

Now we have an /; and an I singularity. The two curves (and the two singularities) are
exchanged by a shift of the 0-angle,

0 — 60+ 2 A% 5 —A2

Due to total rescaling v/2 0 v/2 = 2, the SW differentials are related as:

Aso@)y = 2Asu(e) -
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The SO(3)+ curves

For SO(3)+, the light BPS states are:

X
v = (2,0) o = V2(=2,1)

The monopole has now charge 2 in the SO(3)+ normalisation.

_ (2m. ¢
(m+a9+)so(3)+ I I

Similarly, for SO(3) -, we have:

™ = (2,-1) o = v2(-2,2)

and here the dyon has charge 2 in the SO(3)- normalisation:

q m4
(m-=‘1-)so(3)_ = ( (m+ I+ T

)so<3)+ '
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The SO(3)4+ curves

The SO(3)+ Coulomb branch is a modular curve for I'g(4).

50(3), S0(3)

The modular function is obtained
from the I'°(4) function using:

1
TSO@B)+ = ETSU(Q] ;

1

QSR 7577\ | /TSTF Tso@3). = Tso@3)4 T+ 9

R / v "é?"zf AT TET2EN\
W \

s128F V' 1srisF |

05 1

Note for the experts: This is the same curve as for SU(2) Ny = 3 but the I; is undeformable.
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The SO(3)4+ curves and their torsion sections

The SO(3)+ curves have an interesting Mordell-Weil group:
I

P = (Pt.or . -':41

For SO(3)+, they are generated by:

w  3A* duA AP
P:;z.l._(ﬁ- 4 ’\/ﬁ_\/i)’ 2P;4_

Writing this as a group extension

0 zZM™ 57,57, 50

the Zgl]('m) C Za4 subgroup is identified with the magnetic one-form symmetry of
SO(3)+. So this is another example of our general claim (I):

I c ®or(S)

Coming from the relative curve, the T'!l can be identified as the generator of the dual
isogeny.
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The SO(3)4+ curves and their torsion sections

i

But what about the Z4 generator here? In fact, we simply have:

with a rescaling by @ = /4 = 2, so that:

ESO(3)+/tP¢ _ pSOo®)-
Ly

There is an interesting physical interpretation of this mathematical fact.
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The SO(3)4+ curves and non-invertible symmetry

The SU(2) theory has a Zém R-symmetry, which is spontaneously broken to Z4 on the
CB branch. The spontaneously broken Z> exchanges the two SW singularities.

In the AV = 1 deformation of the theory, we have two physically equivalent confining
vacua, exchanged by the Z; R-symmetry. [sw, 1994]

Moreover, the Zo C ZgR) has a mixed anomaly with the 2’4[21] one-form symmetry:

[Cordova, Dumitrescu, 2018]

T
~ C[ll U'P(Bm)
|

5

Gauging ZS], we loose the Zs one-form symmetry, hence the two SW singularities are not

physically equivalent. Indeed, upon mass deformation to N' =1 S0O(3) SYM one vacuum
confines trivially and the other has an IR TQFT. [Aharony, Seiberg, Tachikawa, 2013]

The Z> 0-form symmetry of the SU(2) gauge theory becomes a non-invertible symmetry
(NIS) NV in the SO(3)+ theory. [Kaidi, Ohmori, Zheng, 2021]

Claim (Ill): The 4-isogeny above composed with the shift § — 6 + 27 implements the
action of the NIS A/ on the SO(3) SW curve. J
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Summary: SW curves for pure su(2) N =2 SYM

13

Za

SO(3)_

Reading between the lines <  Reading between the rational sections
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Another example: SW curves for the su(2) N = 2* theory

Za

S0(3)-

Here, S-duality acts non-trivially on the UV coupling 7. (and on the mass), and there is
a unique absolute curve. We recover the pure su(2) in the large mass limit.
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5d SCFTs and global structures of KK theories
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Global structures of 5d SCFTs on S!

I

Consider a 5d SCFT. It is a strongly coupled conformal field theory with 8 Poincaré
supercharges. There is a conjectured classification of rank-one 5d SCFTs, indexed by
their flavour symmetry algebra: [Seiberg, 1996; ... ; Bhardwaj, 2019]

E(J:{}, E1:‘41 y El :u(l), E2,
Only two of these theories have a non-trivial one-form (electric) symmetry:
Ey,: TIl=1z,
Ei: TIH=17,

We consider these theories on R* x S, giving us rank-one 4d A/ = 2 KK theories with
symmetry:

rl=zy - rM=2zy, T9=2y.
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Global structures of 5d SCFTs on S!

In 5d, gauging a one-form symmetry gives us a dual two-form symmetry. (In M-theory on
a local Calabi-Yau, this corresponds to either M2-brane or M5-brane defects.)

In 4d, we can gauge the zero-form and one-form symmetries separately. Thus, we expect
to have a number of global structures in 4d:

1,0
T

TE[;I,Q}

o

\‘C

1,2
T

That is, assuming 't Hooft anomalies vanish. In fact, I"E] of F; is non-anomalous, while

d
Ep has an anomaly ~ B3, [Apruzzi, Bonetti, Garcia Etxebarria, Hosseini, Schafer-Nameki, 2021]

The analysis of the SW curves bears this out.
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Global structures for

Er

The E; theory can be mass-deformed to the 5d N = 1 su(2) gauge theory. Its SW
curves depends on a “mass parameter” ), with A =t 1 the SCFT limit.

We find the KK theories:

E,[SU(2))"

E1[SO(3)1]M°

For the E:[SU(2)]M2
theory, we have four I;
singularities if A\ # 1,

11 = (1,0),
y2 =73 =(-1,2),
74=(1s_4)s

with BPS quiver:

see also [Jia, Yi, 2022]
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Global structures for E7: with [1, 0]-form symmetry

14

Eq[SU(2))10

-

£ [S;U(z)][l'z]

1

[

3
I
‘e
-
R
~
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Global structures for Ej

For Lo, we similarly have relative and absolute curyes for the Z:gl] structure:

Ig

(Eo)ly (Eo)1,

] [1]

The cubic anomaly for ZE in 5d gives a mixed anomaly in 4d, so that upon gauging Z;
is 4d we loose the Zg)] apparent in the (EU)LI‘O] theory.
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Absolute SW curves for the M-string

We have a similar story for the M-string theory — that is, the 6d A’ = (2,0) A; theory on
R* x T? with a flat connection on T2 (‘adjoint mass' in the 4d limit):

(@)

M[SU(2)|t2

= -

) W
by,

@

M[SO(3)+]10) N
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A 6d BPS quiver

1
Finally, analysing the M-string theory Coulomb branch, we discovered a simple 6d BPS
quiver for the M-string theory on R* x T%:

This passes many consistency checks, but deserves further study...

[CC, del Zotto, Grossutti, Magureanu, to appear]
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Summary: Reading between the rational sections

We developped a systematic understanding of the global structure of rank-one 4d N = 2

SQFTs from their Seiberg-Witten geometry. We 5L1£mmarise this in three conjectures:

Conjecture |. (Defect group.) The Seiberg-Witten curve of any relative rank-one theory
T:e1 is given by a non-principally-polarised elliptic curve. In this case, the defect line
group of the theory is isomorphic to the torsion part of the MW group of the
mass-deformed curve:

D 2 ®or (Smass) -

Conjecture II. (One-form symmetry.) The Seiberg-Witten curve of any absolute
rank-one theory T~ must be a principally-polarised elliptic curve. The line lattice is
identified with the homology lattice. Then, the one-form symmetry I'') of T is
isomorphic to a subgroup of the torsion part of the Mordell-Weil group of the
mass-deformed curve:

F[l] g q’tor(Smass) .

Conjecture Ill. (Gauging 1"[1].) At the level of the rank-one SW geometry, the gauging
of a one-form symmetry T'l!l = ZE\I,] is the composition of two N -isogenies:
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Summary: Reading between the rational sections

1
» We also hinted at further structures encoded in the SW geometry: non-invertible
symmetries, 2-groups [CC, Magureanu, 2021], €tc. This deserves further study.

» We clarified aspects of the global structures of 5d and 6d SCFTs compactified to
R* x T2, A rich structure emerged, combining one-form symmetries and discrete

gauging.

Outlook:
We focussed on rank-one theories. We need new tools to go to higher ranks.
The reduction to 3d N = 4 is extemely rich [Seiberg, Witten, 1996; Gaiotto, Moore, Neitzke, 2010].
This will be an important area for future work.

We would like a more direct physics proof of our conjectures. For instance, through
geometric engineering in string theory.

Relatedly, our global structures for 5d theories on R* x S should be understood in
terms of branes (D-branes, NS5-branes and F1) in Type IIA.
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