Title: TBA

Speakers: Suroor Gandhi

Series: Cosmology & Gravitation

Date: December 14, 2023 - 11:00 AM

URL: https://pirsa.org/23120050

Abstract: Abstract TBA

Zoom link https://pitp.zoom.us/j/95952209469?pwd=TERqVlZsMVhvbzJqU1hsalhiUVYxdz09

Pirsa: 23120050 Page 1/21

Pirsa: 23120050 Page 2/21

DARK MATTER (DM)-STANDARD MODEL (SM) INTERACTIONS

Schematic inspired by *Understanding DM throughout Cosmic History*, Colloquium by K. K. Boddy at Aspen Center for Physics (2020)

- Classic example: the WIMP paradigm— theoretically well-motivated
 - Simple extension of SM
 - * "WIMP miracle"
- Inconclusive results have motivated the search for DM beyond the WIMP
- **❖** Inspired scientific programs
- * My focus: signatures of DM from scattering

2

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

Pirsa: 23120050 Page 3/21

MULTIPLE COSMIC PROBES OF DM-SM SCATTERING

- **&** E.g., terrestrial direct detection experiments look for scattering
- ❖ Sensitive to DM mass∼ GeV TeV
- Underground shielding imposes a cross-section "ceiling" barrier
- **Rich diversity of cosmic probes** available

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

Page 4/21

Pirsa: 23120050

ERA OF PRECISION COSMOLOGY

And for each of these probes, we have multiple experiments collecting data...

- **Cosmologists are observing the universe with increasing precision.**
- **♦ My goal** as a theorist:

Theoretical accuracy must remain commensurate with high-precision observations.

*a grossly non-exhaustive list

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

_

Pirsa: 23120050 Page 5/21

DM-SM $(\chi$ -b) SCATTERING IN THE COSMOLOGICAL FRAMEWORK

- ***** Cosmological observables are sensitive to energy and momentum exchanged among species
- $DM(\chi)$ \Rightarrow DM-SM $(\chi-b)$ scattering alters the heat and momentum injected into the baryon fluid

$$\dot{Q}_{\chi} \Big|_{\text{scat}} \propto \frac{d}{dt} \int d^3 \mathbf{v}_{\chi} \, (\overrightarrow{\mathbf{v}}_{\chi} - \overrightarrow{\mathbf{V}})^2 \, f_{\chi}(\overrightarrow{\mathbf{v}}_{\chi}) \quad \text{(affects } T_{\chi}, \, T_b\text{)}$$

$$\dot{\overrightarrow{\mathbf{V}}}_{\chi}\Big|_{\text{scat}} = \frac{d}{dt} \int d^3\mathbf{v}_{\chi} \, \overrightarrow{\mathbf{v}}_{\chi} \, f_{\chi}(\overrightarrow{\mathbf{v}}_{\chi}) \quad \text{(affects } b \text{ eq. of motion} \to \text{CMB)}$$

❖ Involves solving the Collisional Boltzmann equation

$$\frac{d}{dt}f_{\chi}(\overrightarrow{\mathbf{v}}_{\chi}) = C[f_{\chi}](\overrightarrow{\mathbf{v}}_{\chi})$$

 $DM(\chi) DM(\chi)$ SM(b) SM(b)'b': baryon

Pirsa: 23120050

ISSUES IN THE THEORETICAL FRAMEWORK

ISSUE 1: BLANKET ASSUMPTION OF THERMALIZED DARK MATTER VELOCITIES

- Almost *all* constraints on DM-SM scattering assume that $f_{\chi}(\overrightarrow{\mathbf{v}}_{\chi}) = f_{\chi}^{\text{MB}}(\overrightarrow{\mathbf{v}}_{\chi})$
- * Irrespective of whether the DM model involves efficient interactions

S. Seher Gandhi & Y. Ali-Haïmoud (2022)

ISSUE 2: THE INTRINSIC NONLINEARITY OF DM-SM SCATTERING

- * DM-SM scattering rate depends non-linearly on perturbations
- $\ \ \, \ \ \, \ \ \, \ \ \,$ The standard framework of ΛCDM cosmology can only handle eq.s that are linear in perturbations

Y. Ali-Haïmoud, S. Scher Gandhi, & T. L. Smith (arXiv:2312.xxxxx)

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

U

Pirsa: 23120050

ISSUE 1: BLANKET ASSUMPTION OF THERMALIZED DM VELOCITIES

THERMALIZED ⇔ MAXWELL-BOLTZMANN (MB) DISTRIBUTED

Why is the MB assumption used for DM-SM scattering?

- $\dot{\mathbf{v}}$ $\dot{\mathbf{Q}}_{\chi}$, $\dot{\mathbf{V}}_{\chi}$ have analytical forms
- ❖ No need to implement the collision operator (a tremendous simplification!)

$$C_{\chi b}[f_{\chi}](\overrightarrow{\mathbf{v}}) = \begin{bmatrix} d^{3}\mathbf{v}'(\overrightarrow{\Gamma_{\chi b}}(\overrightarrow{\mathbf{v}}' \to \overrightarrow{\mathbf{v}})f_{\chi}(\overrightarrow{\mathbf{v}}') & - \overrightarrow{\Gamma_{\chi b}}(\overrightarrow{\mathbf{v}} \to \overrightarrow{\mathbf{v}}')f_{\chi}(\overrightarrow{\mathbf{v}}) \end{bmatrix}$$

So why is the MB assumption a problem?

- **Excludes study of models with non-trivial DM** self-scattering by forcing $C_{\chi\chi}[f_{\chi}^{\text{MB}}] = 0$.

7

A LESS STRINGENT APPROXIMATION— DIFFUSION

DIFFUSION OR FOKKER-PLANCK (FP) FORMALISM (Y. ALI-HAÏMOUD 2019)

diffusive χ -b scattering: small change in $\overrightarrow{\mathbf{v}}_{\chi}$ $(\overrightarrow{\mathbf{v}}_{\chi \, \text{ini}} \approx \overrightarrow{\mathbf{v}}_{\chi \, \text{fin}})$

- ♦ Fokker-Planck (FP ⇔ diffusion) formalism sets $C[f_{\chi}](\overrightarrow{\mathbf{v}}_{\chi}) \approx C^{\text{FP}}[f_{\chi}](\overrightarrow{\mathbf{v}}_{\chi})$ [Ali-Haïmoud 2019]
- $\bigstar \dot{Q}_{\chi}$, $\overrightarrow{\mathbf{V}}_{\chi}$ computed more selfconsistently: exact for a given f_{χ}

- ***** But, how accurate is $C^{\text{FP}}[f_{\chi}]$ outside this mass limit?
- **E.g., DM-proton scattering when** $m_{\chi} \lesssim m_p \; (1 \, \text{GeV})$

 $m_{\chi} \sim m_b$

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

Pirsa: 23120050

AN EXACT METHOD

TO DETERMINE THE ACCURACY OF DIFFUSION

- \bigstar My work: evolved $f_{\chi}(\overrightarrow{\mathbf{v}}_{\chi})$ exactly for a smooth-universe or background—simpler ($C_{\chi b}^{1D}[\bar{f}_{\chi}]$) but still nontrivial
- \diamond Used the background heat-exchange rate \dot{Q}_{γ} to compare the FP and exact methods

- Max FP error~17% across allmass regimes
- **♦** Max MB error ~160%
- Motivates assuming diffusion in lieu of MB beyond the background (with aniotropies)

S. Seher Candhi & Y. Ali-Haïmoud (2022)

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

Pirsa: 23120050 Page 10/21

Is FP accurate for $m_{\chi} \ll m_{_{\! S}}$?— 3D vs. 1D diffusion

- * 3D diffusion requires small change in DM vel. vector \overrightarrow{v}
- **❖ 1D diffusion** only requires small change in DM vel. magnitude *v*
- * Showing coefficients that quantify diffusivity of 3D & 1D scattering for given m_s/m_{γ}
- * Scattering is non-diffusive for $m_s \sim m_\chi$ in 3D as well as 1D, but FP still accurate to $\lesssim 20\%$
- **❖ Bodes well for 3D** (relevant for cosmology)

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

10

ISSUES IN THE THEORETICAL FRAMEWORK

ISSUE 1: BLANKET ASSUMPTION OF THERMALIZED DARK MATTER VELOCITIES

- Almost *all* constraints on DM-SM scattering assume that $f_{\chi}(\overrightarrow{\mathbf{v}}_{\chi}) = f_{\chi}^{\text{MB}}(\overrightarrow{\mathbf{v}}_{\chi})$
- * Irrespective of whether the DM model involves efficient interactions

S. Scher Gandhi & Y. Ali-Haïmoud (2022)

ISSUE 2: THE INTRINSIC NONLINEARITY OF DM-SM SCATTERING

- * DM-SM scattering rate depends non-linearly on perturbations
- ♦ Our standard framework of ∧CDM cosmology can only handle eq.s that are linear in perturbations

Y. Ali-Haïmoud, S. Seher Gandhi, & T. L. Smith (arXiv:2312.xxxxx)

דו

ISSUE 2: THE INTRINSIC NONLINEARITY OF DM-SM SCATTERING

AND ITS INCORPORATION INTO LINEAR COSMOLOGY (E.G. CMB POWER SPECTRA)

***** Eq. of motion:
$$\overrightarrow{\mathbf{V}}_{\chi} = \overrightarrow{\mathbf{V}}_{\chi} \Big|_{\text{std}} + \Gamma_{V} [V_{\chi b}; (T_{\chi}/m_{\chi} + T_{b}/m_{b})] (\overrightarrow{\mathbf{V}}_{b} - \overrightarrow{\mathbf{V}}_{\chi})$$

$$V_{\chi b} \equiv |\overrightarrow{\mathbf{V}}_{\chi} - \overrightarrow{\mathbf{V}}_{b}|$$
: relative bulk vel., $(T_{\chi}/m_{\chi} + T_{b}/m_{b})$: relative thermal vel. $\equiv (T/m)_{\chi b}$

❖ Current methods evade this issue with a "mean-field" ansatz (mfa) — C. Dvorkin et. al (2013)

$$\Gamma_V[V_{\chi b}; (T/m)_{\chi b}] \longrightarrow \Gamma_V^{\text{mfa}} \equiv \Gamma_V[0; (T/m)_{\chi b} + \langle V_{\chi b}^2 \rangle^{\text{std}}]$$

- \blacktriangleright Not derived, but $\Gamma_V[V_{\chi b}; (T/m)_{\chi b}] = \Gamma_V^{\text{mfa}}$ if $V_{\chi b} \ll (T/m)_{\chi b}^{1/2}$
- $ightharpoonup \Gamma_V^{\text{mfa}}$ is used even when it has unknown accuracy

... at epochs directly affecting the CMB ($z_{\rm rec} \sim 10^3$)

T. Driskell et. al (2022)

12

REGIMES MOST AFFECTED BY THE NON-LINEARITY

 $ightharpoonup \Gamma_V^{\text{mfa}} \text{ is OK if } \langle V_{\chi b}^2 \rangle \ll (T/m)_{\chi b}$

- * Any Γ_V is OK if scattering is inefficient (as $\Gamma_V/H \ll 1$ does not matter)
- * The CMB is most sensitive to χb scattering in $\sigma_{\chi b} \propto v_{\chi b}^{-4}$ (Coulomb-like DM)
- ***** CMB places some of the strongest constraints on $\sigma_{\chi b} \propto v_{\chi b}^{-4}$

K. K. Boddy, Aspen Center for Physics Colloquium (2020)

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

13

THE SEARCH FOR A MORE RIGOROUS APPROACH

AN APPROXIMATION FOR THE FUNDAMENTAL NONLINEARITY FROM FIRST PRINCIPLES

 \diamond We propose a new expansion parameter— the scattering cross-section $\sigma_{\chi b}$

such that CMB anisotropies $\Theta \approx \Theta^{(0)} + \Theta^{(1)}$

$$\langle \Theta \Theta \rangle \sim C_{\ell} = C_{\ell}^{\text{std}} + \Delta C_{\ell}, \qquad \Delta C_{\ell}^{(01)} \sim \langle \Theta^{(0)} \Theta^{(1)} \rangle$$

- * We distill how $\langle \Theta^{(0)} \Theta^{(1)} \rangle$ ultimately depends on $\Gamma_V(V_{\gamma b})$
- **We find** $\langle \Theta^{(0)} \Theta^{(1)} \rangle$ is invariant under

$$\Gamma_V(V_{\chi b}) \to \frac{\langle V_{\chi b}^2 \; \Gamma_V \rangle}{\langle V_{\chi b}^2 \rangle} \equiv \widetilde{\Gamma}_V$$

* A serendipitous finding: $\widetilde{\Gamma}_V$ is precisely... = Γ_V^{mfa}

from C. Dvorkin et. al (2013)

14

CURRENT METHODS ON FIRMER FOOTING

FOR SUFFICIENTLY WEAK INTERACTIONS

- ***** Before, regime of applicability of Γ_V^{mfa} was uncertain.
- \bigstar Now, we know Γ_V^{mfa} is exact for weak enough interactions: check that ΔC_ℓ linear in $\sigma_{\gamma b}$

Underlying plot: K. K. Boddy; Overplotted results: Y. Ali-Haïmoud, **S. Scher Gandhi**, & T. Smith (2312.xxxxx)

15

CURRENT METHODS ON FIRMER FOOTING

FOR SUFFICIENTLY WEAK INTERACTIONS

❖ The regions we've added to are the most interesting for the CMB

Underlying plot: K. K. Boddy;

Overplotted results: Y. Ali-Haïmoud, S. Seher Gandhi, & T. Smith (2312.xxxxx)

16

REGIME OF INAPPLICABILITY OF CURRENT METHODS

STRONGLY INTERACTING DARK MATTER

17

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

Pirsa: 23120050 Page 18/21

IDEAS FOR FURTHER EXPLORATION

Non-Gaussian Signatures and B-Mode Polarization

- $ightharpoonup \Gamma_V
 ightharpoonup \Gamma_V$ does not give the exact Θ , but only the exact $\langle \Theta^{(0)} \Theta^{(1)} \rangle$
- ♦ $\Theta \propto \Gamma_V(V_{\chi b}) \overrightarrow{V}_{\chi b}$ nonlinear in initial curvature perturbations, ζ ⇒ non-Gaussianities: e.g. CMB trispectrum or connected 4 pt. function
 - * Planck sensitivity to primordial 4 pt. function $T_{prim} \sim 10^{-4} \langle \zeta^2 \rangle^2$
 - \star $\mathbf{T}^{(0001)} \sim \langle \Theta^{(0)} \Theta^{(0)} \Theta^{(0)} \Theta^{(0)} \rangle \sim 10^{-2} \langle \zeta^2 \rangle^2$ for $\sigma_{\chi b}$ at 95% C.L. from $Planck C_\ell$'s
 - * $T^{(0001)}/T^{prim} \sim 10^2$ if $\sigma_{\chi b}$ saturates $Planck \ C_\ell$ bounds \Rightarrow DM-SM scattering trispectrum could have much higher constraining power
- \bigstar Curl of $\Gamma_V(V_{\chi b})\overrightarrow{\mathbf{V}}_{\chi b}$ can be non-zero \Rightarrow source B-mode polarization

18

KEY TAKEAWAYS

THEORETICAL ACCURACY IN COSMOLOGICAL DM-SM SCATTERING

- * There are assumptions in the cosmological framework which we should reassess and adjust
 - MB (assumption) vs. FP (approximation)
 - * mean-field Γ_V^{mfa} assumption vs. $\widetilde{\Gamma}_V = \Gamma_V^{\text{mfa}}$ approximation at $\mathcal{O}(\sigma_{\chi b})$
- * The assumptions made are not necessarily unique choices
 - ❖ If not for the mathematical simplicity of MB, one could have assumed FP instead
 - Instead of $\Gamma_V^{\text{mfa}} = \Gamma_V(\langle V_{\chi b}^2 \rangle)$, one could have reasonably assumed $\Gamma_V^{\text{mfa}} = \left\langle \Gamma_V(V_{\chi b}^2) \right\rangle_{V_{\chi b}}$
- * Developing improved, self-consistent approximations can clarify future directions
 - ❖ DM self-scattering concurrently with DM-SM scattering using FP formalism
 - * A better framework for <100% fraction of interacting DM is needed (maybe expand in f_{γ} ?)
 - * Higher-order statistics (e.g. trispectrum) from DM-SM scattering

19

THANK YOU

- * Other topics I have worked on include galactic dynamics and stellar chemistry
- ❖ I'm also interested in learning more about and working on:
 - Mapping the "dark" baryonic distribution with the CMB
 - Cosmological inference using BH binaries x-correlated with quasars
 - ❖ Astro- and cosmological statistics

20

Suroor Seher Gandhi | Perimeter Institute | December 14, 2023

Pirsa: 23120050 Page 21/21