Title: Continuum Relational Physics in Group Field Theories and Applications to Cosmology

Speakers: Luca Marchetti

Series: Quantum Gravity

Date: December 14, 2023 - 2:30 PM

URL: https://pirsa.org/23120046

Abstract: It is a general expectation in several approaches to quantum gravity that continuum physics emerges as a macroscopic phenomenon from the collective behavior of fundamental quantum gravity degrees of freedom. However, a physical understanding of this emergence process requires us to address deeply intertwined technical and conceptual issues. In this talk, I will focus on two of them: the localization problem, related to the background independence of the underlying quantum gravity theory, and the coarse-graining problem, related to the extraction of the macroscopic, continuum physics from the microscopic, quantum-gravitational one. After discussing what strategies can be adopted in general to address these issues, I will show a concrete implementation of such strategies in the context of the group field theory approach to quantum gravity. I will then demonstrate how these strategies can be employed to extract cosmological physics from group field theories, allowing to clarify the intrinsically quantum-gravitational nature of cosmic structures and to characterize the impact of quantum gravity effects on the emergent cosmological dynamics.

---

Zoom link https://pitp.zoom.us/j/99070866809?pwd=Y1VGdGR5clZ0bTFwY2dBRHBwU3ptUT09

Pirsa: 23120046 Page 1/32



## Continuum Relational Physics in Group Field Theories and Applications to Cosmology

#### Luca Marchetti

Quantum Gravity Group Seminars Perimeter Institute, Waterloo 14 December 2023

Department of Mathematics and Statistics
UNB Fredericton

Pirsa: 23120046 Page 2/32



Pirsa: 23120046 Page 3/32



Pirsa: 23120046 Page 4/32

## Introduction to GFTs

Pirsa: 23120046 Page 5/32

#### **Group Field Theory and simplicial gravity**

Definition

Group Field Theories: theories of a field  $\varphi: G^r \to \mathbb{C}$  defined on r copies of a group manifold G.

r is the dimension of the "spacetime to be" (r=4) and G is the local gauge group of gravity,  $G=\operatorname{SL}(2,\mathbb{C})$  or, for some models,  $G=\operatorname{SU}(2)$ .

Action

$$S[\varphi,\bar{\varphi}] = \int \mathrm{d}g_{\mathfrak{a}}\bar{\varphi}(g_{\mathfrak{a}})\mathcal{K}[\varphi](g_{\mathfrak{a}}) + \sum_{\gamma} \frac{\lambda_{\gamma}}{n_{\gamma}} \operatorname{Tr}_{\mathcal{V}_{\gamma}}[\varphi] + \text{c.c.} \,.$$

- Interaction terms are combinatorially non-local.
- Field arguments convoluted pairwise following the combinatorial pattern dictated by the graph  $\gamma$ :

$$\operatorname{Tr}_{\mathcal{V}_{\gamma}}[\varphi] = \int \prod_{i=1}^{n_{\gamma}} \mathrm{d}g_{\mathfrak{s}} \prod_{(\mathfrak{s},i;b,j)} \mathcal{V}_{\gamma}(g_{\mathfrak{s}}^{(i)},g_{b}^{(j)}) \prod_{i=1}^{n_{\gamma}} \varphi(g_{\mathfrak{s}}^{(i)}) \,.$$



Partition function

$$Z[\varphi, \bar{\varphi}] = \sum_{\Gamma} w_{\Gamma}(\{\lambda_{\gamma}\})A_{\Gamma} = \text{complete spin foam model}.$$

- ightharpoonup  $\Gamma$  = stranded diagrams dual to r-dimensional cellular complexes of arbitrary topology.
- $\blacktriangleright$  Amplitudes  $A_{\Gamma}$  = sums over group theoretic data associated to the cellular complex.
- $ightharpoonup \mathcal{K}$  and  $\mathcal{V}_{\gamma}$  chosen to match the desired spin foam model.

Oriti 1110.5606; Reisenberger, Rovelli 0002083; Freidel 0505016; Baratin, Oriti 1002.4723; Finocchiaro, Oriti 1812.03550.

Luca Marchetti

Continuum Physics from GFTs

#### **Group Field Theory and Loop Quantum Gravity**

#### One-particle Hilbert space

The one-particle Hilbert space is  $\mathcal{H}_{\text{tetra}} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$  (subset defined by the imposition of constraints)

Lie algebra (metric)

Lie group (connection)

$$\mathcal{H}_{\Delta_{\mathfrak{F}}} = \mathcal{L}^{2}(\mathfrak{g})$$
 Non-comm.  $\mathcal{H}_{\Delta_{\mathfrak{F}}} = \mathcal{L}^{2}(G)$ 

**Constraints** 

Geometricity constraints (appropriately encoded in  $\mathcal{K}$  and  $\mathcal{V}_{\gamma}$ ) allow for a r-1-simplicial interpretation of the fundamental quanta:

Closure

**Simplicity** 



Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786.

Luca Marchetti

Continuum Physics from GFTs

#### **Group Field Theory and Loop Quantum Gravity**

#### One-particle Hilbert space

The one-particle Hilbert space is  $\mathcal{H}_{tetra} \subset \otimes_{a=1}^4 \mathcal{H}_{\Delta_a}$  (subset defined by the imposition of constraints)

Constraints

Geometricity constraints (appropriately encoded in  $\mathcal{K}$  and  $\mathcal{V}_{\gamma}$ ) allow for a r-1-simplicial interpretation of the fundamental quanta:

Closure

**Simplicity** 

 $\sum_{a} B_{a} = 0$  > X.

 $X \cdot (B - \gamma \star B)_a = 0 \text{ (EPRL)};$ 

(faces of the tetrahedron close).  $\blacktriangleright X \cdot B_a = 0$  (BC).



QG

- ▶ Impose simplicity and reduce to G = SU(2).
- ► Impose closure (gauge invariance).

$$\mathcal{H}_{\mathsf{tetra}} = \bigoplus_{\vec{j}} \mathsf{Inv} \left[ \bigotimes_{a=1}^{4} \mathcal{H}_{j_a} \right]$$
= open spin-network vertex space

Finocchiaro, Oriti 1812.03550; Baez, Barrett 9903060; Baratin, Oriti 1002.4723; Gielen, Oriti 1004.5371; Oriti 1310.7786

Luca Marchetti

Continuum Physics from GFTs

#### The Group Field Theory Fock space

#### **Tetrahedron wavefunction**

 $\varphi(g_1,\ldots,g_4)$  (subject to constraints)

Many-body
Theory

GFT field operator  $\hat{arphi}(g_1,\ldots,g_4)$  (subject to constraints)

space

$$\mathcal{F}_{\mathsf{GFT}} = \bigoplus_{V=0}^{\infty} \mathrm{sym} \left[ \mathcal{H}_{\mathsf{tetra}}^{(1)} \otimes \mathcal{H}_{\mathsf{tetra}}^{(2)} \otimes \dots \mathcal{H}_{\mathsf{tetra}}^{(V)} \right]$$

- $ightharpoonup \mathcal{F}_{\mathsf{GFT}}$  generated by action of  $\hat{\varphi}^{\dagger}(g_a)$  on  $|0\rangle$ , with  $[\hat{\varphi}(g_a), \hat{\varphi}^{\dagger}(g_a')] = \mathbb{I}_{\mathcal{G}}(g_a, g_a')$ .
- lacksquare  $\mathcal{H}_{\Gamma}\subset\mathcal{F}_{\mathsf{GFT}},~\mathcal{H}_{\Gamma}$  space of states associated to connected simplicial complexes  $\Gamma.$
- ▶ Generic states do not correspond to connected simplicial lattices nor classical simplicial geometries.
- $\blacktriangleright$  Similar to  $\mathcal{H}_{LQG}$  but also different: no continuum intuition, orthogonality wrt nodes, not graphs.

Operators

Volume operator 
$$\hat{V} = \int dg_a^{(1)} dg_a^{(2)} V(g_a^{(1)}, g_a^{(2)}) \hat{\varphi}^{\dagger}(g_a^{(1)}) \hat{\varphi}(g_a^{(2)}) = \sum_{j_a, m_a, \iota} V_{j_a, \iota} \hat{\varphi}^{\dagger}_{j_a, m_a, \iota} \hat{\varphi}_{j_a, m_a, \iota}.$$

▶ Generic second quantization prescription to build a m + n-body operator: sandwich matrix elements between spin-network states between m powers of  $\hat{\varphi}^{\dagger}$  and n powers of  $\hat{\varphi}$ .

Oriti 1310.7786; Oriti 1408.7112; Sahlman, Sherif 2302.03612.

Luca Marchetti

Continuum Physics from GFTs

#### Group Field Theory and matter: scalar fields

Group Field Theories: theories of a field  $\varphi: G' \times \mathbb{R}^{d_l} \to \mathbb{C}$  defined on the product of G' and  $\mathbb{R}^{d_l}$ .

r is the dimension of the "spacetime to be" (r=4) and G is the local gauge group of gravity,  $G=\operatorname{SL}(2,\mathbb{C})$  or, for some models,  $G=\operatorname{SU}(2)$ .

#### **Kinematics**

Quanta are r-1-simplices decorated with quantum geometric and scalar data:

- ▶ Geometricity constraints imposed analogously as before.
- ▶ Scalar field discretized on each d-simplex: each d-1-simplex composing it carries values  $\chi \in \mathbb{R}^{d_1}$ .



#### **Dynamics**

 $S_{GFT}$  obtained by comparing  $Z_{GFT}$  with simplicial gravity + scalar fields path integral.

- ► Geometric data enter the action in a non-local and combinatorial fashion.
  - Scalar field data are local in interactions.
- ► For minimally coupled, free, massless scalars:

$$\mathcal{K}(g_a, g_b; \chi^{\alpha}, \chi^{\alpha'}) = \mathcal{K}(g_a, g_b; (\chi^{\alpha} - \chi^{\alpha'})^2)$$

$$\mathcal{V}_5(g_a^{(1)},\ldots,g_a^{(5)},m{\chi}) = \mathcal{V}_5(g_a^{(1)},\ldots,g_a^{(5)})$$

Li, Oriti, Zhang 1701.08719; Oriti 0912.2441; Gielen, Oriti 1311.1238; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Sindoni 1602.08104; ...

Luca Marchetti

Continuum Physics from GFTs

-



Pirsa: 23120046 Page 11/32

# **Continuum limit and localization**

Pirsa: 23120046 Page 12/32



Pirsa: 23120046 Page 13/32

#### Continuum physics and QG: the general perspective



Pirsa: 23120046 Page 14/32

#### Mean-field approximation in GFT

## Local theory

#### Mean-field

#### ► Mass $m^2 \equiv \mu$ ; interactions $\lambda \varphi^4$ . ► Gaussian approx.: $\varphi = \varphi_0 + \delta \varphi$ .

Two different phases:

$$\frac{\delta S}{\delta \varphi} = 0 \, : \, \begin{cases} \varphi_0 = 0 \,, & \mu > 0 \,, \\ \varphi_0 \neq 0 \,, & \mu < 0 \,. \end{cases} \quad \text{Typical correlation scale } \xi^2 \colon \xi^2 \to \infty \text{ as } \mu \to 0 \,.$$

#### **Fluctuations**

• Correlations: 
$$C = \langle \delta \varphi^2 \rangle$$
.

$$\xi^2 o \infty$$
 as  $\mu o 0$  .

#### **Conclusions**

► Mean-field valid only if

$$Q=\int_{\Omega_\xi}\,C/\int_{\Omega_\xi}\,\varphi_0^2\ll 1$$

$$Q\ll 1 \longleftrightarrow d \geq d_{\rm c} = 4$$

- ▶ Rank r,  $G = \mathbb{R}^{d_G} \to G_L = T_L^{d_G}$ . ▶ Effective mass  $b_j = \mu[1 \mathcal{X}(j)]$ .
- ▶  $L \to \infty$ ,  $\mu \to 0$  not commuting. ▶ C expands in zero modes.

- ▶ Non-local, generic interactions. ▶ Small  $\xi$  if  $\mu \to 0$  before  $L \to \infty$ .

Analogous to toy GFT.

$$d=d_G(r-s_0),$$

$$d_{\rm c}=2n_{\gamma}/(n_{\gamma}-2).$$



$$\begin{array}{c}
\text{Melonic} \\
\text{Normal} \\
\text{Normal} \\
\text{Solution}
\end{array}$$

$$\begin{array}{c}
\text{Solution} \\
\text{Normal} \\
\text{Solution}
\end{array}$$

$$\begin{array}{c}
\text{Solution} \\
\text{Solution}
\end{array}$$

- ▶ Matter (scalars): local  $G_1 = \mathbb{R}^{d_1}$ .
- ▶ BC:  $G = SL(2, \mathbb{C}) + constraints$ .
- ▶  $0 \le \eta < L$  & Wick rotation.

- $d = d_1 + d_{\sigma}(r s_0)$ 

  - Flat limit as above.

#### Universal feature

Mean-field theory is always a good description of the phase transition!

LM, Oriti, Pithis, Thürigen 2211.12768-2209.04297-2110.15336

Luca Marchetti

Continuum Physics from GFTs



Pirsa: 23120046

#### Relational strategy and emergent quantum gravity theories

Background independence Problem of localization Relational strategy

A genuinely new dimension of the problem arises for emergent QG theories.

#### Microscopic pre-geo

- ► Fundamental d.o.f. are weakly related to spacetime quantities;
- ► The latter expected to emerge from the former when a continuum limit is taken.

#### Macroscopic proto-geo

- Set of collective observables;
- Coarse grained states or probability distributions.

The quantities whose localization we want to describe relationally are the result of a coarse-graining of some fundamental d.o.f.

Deeply intertwined with continuum limit problem!

Effective approaches!

LM, Oriti 2008.02774; Rovelli Class. Quantum Grav. 8 297; Dittrich 0507106; Goeller, Höhn, Kirklin 2206.01193; ...

Luca Marchetti

Continuum Physics from GFTs

Pirsa: 23120046 Page 17/32

#### **Emergent effective relational strategy**



PRE-GEOMETRIC

#### Basic principles

**Emergence** Relational strategy in terms of collective observables and states.

Effectiveness Averaged relational localization.
Internal frame not too quantum.

#### Concrete example: scalar field clock

#### Emergence

- ▶ Identify (collective) states  $|\Psi\rangle$  admitting a continuum proto-geometric interpretation.
- ► Identify a set of collective observables:



Geometric Scalar field and observables its momentum

Number of quanta

#### Effectivness

▶ It exists a "Hamiltonian"  $\hat{H}$  such that

$$i \frac{\mathrm{d}}{\mathrm{d} \langle \hat{\chi} \rangle_{\Psi}} \langle \hat{O}_{a} \rangle_{\Psi} = \langle [\hat{H}, \hat{O}_{a}] \rangle_{\Psi} ,$$

and whose moments coincide with those of  $\hat{\Pi}$ .

▶ Relative fluctuations of  $\hat{\chi}$  on  $|\Psi\rangle$  should be  $\ll 1$ .

$$\Delta^2 \chi \ll 1 \,, \qquad \Delta^2 \chi \sim \langle \hat{N} \rangle_{\psi}^{-1} \,. \label{eq:delta-eq}$$

LM, Oriti 2008.02774; Bojowald, Hoehn, Tsobanjan 1011.3040; Bojowald, Tsobanjan 0906.1772;

Luca Marchetti

Continuum Physics from GFTs



Pirsa: 23120046 Page 19/32



Pirsa: 23120046 Page 20/32



Pirsa: 23120046 Page 21/32



Pirsa: 23120046 Page 22/32

#### **Quantum gravity coherent states**

## Collective states

#### **GFT** coherent states

- From the GFT perspective, continuum geometries are associated to large number of quanta.
- ► The simplest states that can accommodate infinite number of quanta are coherent states:

$$|\sigma
angle = \mathcal{N}_{\sigma} \exp \left[ \int \mathrm{d}^{d_{I}} \chi \int \mathrm{d}g_{\mathfrak{a}} \, \sigma(g_{\mathfrak{a}},\chi^{\alpha}) \hat{\varphi}^{\dagger}(g_{\mathfrak{a}},\chi^{\alpha}) \right] |0
angle \, .$$

## alse-granning

#### Mean-field approximation

 $\blacktriangleright$  When interactions are small (certainly satisfied in an appropriate regime) the dynamics of  $\sigma$  is:

$$\left\langle \frac{\delta S_{\mathsf{GFT}}[\hat{\varphi},\hat{\varphi}^{\dagger}]}{\delta \hat{\varphi}(g_{\mathsf{I}},x^{\alpha})} \right\rangle_{\sigma} = \int \mathrm{d}h_{\mathsf{a}} \int \mathrm{d}\chi \, \mathcal{K}(g_{\mathsf{a}},h_{\mathsf{a}},(x^{\alpha}-\chi^{\alpha})^{2}) \sigma(h_{\mathsf{a}},\chi^{\alpha}) + \lambda \frac{\delta V[\varphi,\varphi^{*}]}{\delta \varphi^{*}(g_{\mathsf{a}},x^{\alpha})} \bigg|_{\varphi=\sigma} = 0 \, .$$

▶ Non-perturbative: equivalent to a mean-field (saddle-point) approximation of Z.

## Localization

#### Relational peaking

lacktriangle Relational localization implemented at an effective level on observable averages. E.g.,  $\chi^{\mu}$ -frame:

$$\sigma_{x} = (\text{fixed peaking function } \eta_{x}) \times (\text{dynamically determined reduced wavefunction } \tilde{\sigma}),$$

$$\mathcal{O}(x) \equiv \langle \hat{\mathcal{O}} \rangle_{\sigma_{X}} \simeq \mathcal{O}[\tilde{\sigma}]|_{\chi^{\mu} = x^{\mu}} \qquad \hat{N} = \int dg_{a} d^{4}\chi^{\mu} \, \hat{\varphi}^{\dagger}(g_{a}, \chi^{\mu}) \hat{\varphi}(g_{a}, \chi^{\mu})$$

$$\langle \hat{\chi}^{\mu} \rangle_{\sigma_{X}} \simeq x^{\mu} \qquad \text{e.g.}$$

$$N(x) = \int dg_{a} \, |\tilde{\sigma}(g_{a}, x^{\mu})|^{2}$$

LM, Oriti 2008.02774-2112.12677; Oriti, Sindoni, Wilson-Ewing 1602.05881; Gielen, Oriti, Sindoni 1311.1238.

Luca Marchetti

Continuum Physics from GFTs

#### **Effective FLRW cosmological dynamics**

#### Mean-field approximation

- ► Homogeneity:  $\tilde{\sigma}$  depends only on MCMF clock  $\chi^0$ .
- Isotropy:  $\tilde{\sigma}_{v} \equiv \rho_{v} e^{i\theta_{v}}$  ( $v_{\text{EPRL}} \in \mathbb{N}/2$ ,  $v_{\text{BC}} \in \mathbb{R}$ ).
- ► Mesoscopic regime: negligible interactions.

$$0 = \tilde{\sigma}_{\upsilon}^{\prime\prime} - 2i\tilde{\pi}_0 \tilde{\sigma}_{\upsilon}^{\prime} - E_{\upsilon}^2 \tilde{\sigma},$$

$$V(x^0) = \sum_{\nu} V_{\nu} |\tilde{\sigma}_{\nu}|^2 (x^0).$$

**Effective volume dynamics** 

$$\left(\frac{V^{\prime}}{3V}\right)^2 = \left(\frac{2\sum_{\upsilon}V_{\upsilon}\rho_{\upsilon}\mathrm{sgn}(\rho_{\upsilon}^{\prime})\sqrt{\mathcal{E}_{\upsilon}-Q_{\upsilon}^2/\rho_{\upsilon}^2+\mu_{\upsilon}^2\rho_{\upsilon}^2}}{3\sum_{\upsilon}V_{\upsilon}\rho_{\upsilon}^2}\right)^2, \quad \frac{V^{\prime\prime}}{V} = \frac{2\sum_{\upsilon}V_{\upsilon}\left[\mathcal{E}_{\upsilon}+2\mu_{\upsilon}^2\rho_{\upsilon}^2\right]}{\sum_{\upsilon}V_{\upsilon}\rho_{\upsilon}^2}$$

#### Smaller number of quanta (smaller volume and early times)

- ▶ For a large range of initial conditions (at least  $\triangleright x^0$  may not coincide with  $\langle \hat{\chi}^0 \rangle_{\sigma_{v^0}}$  anymore! one  $Q_v \neq 0$  or one  $\mathcal{E}_v < 0$ )
- Volume quantum fluctuations may be large!
  - Singularity res. into quantum bounce?

- Clock quantum fluctuations may be large!
- $\wedge$   $\langle \hat{\Pi}^0 \rangle_{\sigma_{\sim 0}} \neq \langle \hat{H}_{\sigma} \rangle_{\sigma_{\sim 0}}$  (higher moments  $\neq 0$ ).

Effective rel. framework may break down!

LM, Oriti 2008.02774-2010.09700; Oriti, Sindoni, Wilson-Ewing 1602.05881; Jercher, Oriti, Pithis 2112.00091

Luca Marchetti

Quantum bounce

Continuum Physics from GFTs



Pirsa: 23120046 Page 25/32

#### Effective approach for quantum systems

## Quantum system

#### Construction of the effective system

#### Step 1: definition of the quantum phase space

- ▶ Describe the system with  $\langle \hat{A}_i \rangle$  and moments.
- ► Inherited Poisson structure:  $\{\langle \cdot \rangle, \langle \cdot \rangle\} = (i\hbar)^{-1} \langle [\cdot, \cdot] \rangle$

#### Step 2: definition of the constraints

- $\blacktriangleright$   $\langle \hat{C} \rangle = 0$  and  $\langle (\widehat{pol} \langle \widehat{pol} \rangle) \hat{C} \rangle = 0$  eff. constraints;
- Step 3: truncation scheme (e.g. semiclassicality)

#### Relational description

Step 1: choose a clock  $\hat{T}$  ([ $\hat{T}$ ,  $\hat{P}$ ] closes)

Step 2: gauge fixing

▶ 1st order:  $\Delta(TA_i) = 0$ ,  $A_i \in A \setminus \{\hat{P}\}$ .

#### **Step 3: relational rewriting**

 Write evolution of the remaining variables wrt. T (classical clock).

How can this framework be generalized to a **field theory context**?

Infinitely many algebra generators.

Infinitely many quantum constraints.

#### Additional truncation scheme

#### Motivations

- ► Interest in a coarse grained system characterized by a small number of macroscopic (1-body) observables.
- ► Expected to be the case for cosmology.

#### Coarse-graining truncation

- ► When the e.o.m. are linear, consider an integrated 1-body quantum constraint.
- ► Algebra generated by minimal set of physically relevant operators (including constraint).

LM, Gielen, Oriti, Polaczek 2110.11176; Bojowald, Sandhoefer, Skirzewski, Tsobanjan 0804.3365; Bojowald Tsobanjan 0906.1772.

Luca Marchetti

Continuum Physics from GFTs

11

Pirsa: 23120046 Page 26/32

#### A state agnostic approach: application to GFT

How can this framework be generalized to a **field theory context**? Infinitely many algebra generators. Infinitely many quantum constraints.

#### Additional truncation scheme

#### Motivations

- ► Interest in a coarse grained system characterized by a small number of macroscopic (1-body) observables.
- Expected to be the case for cosmology.

#### Coarse-graining truncation

- ▶ When the e.o.m. are linear, consider an integrated 1-body quantum constraint.
- ► Algebra generated by minimal set of physically relevant operators (including constraint).

### Setting

#### GFT with MCMF scalar field

- Free e.o.m.:  $\mathcal{D}\varphi \equiv (m^2 + \hbar^2 \Delta_g + \lambda \hbar^2 \, \partial_\chi^2)\varphi = 0.$  Free e.o.m.:  $\hat{\chi}$ ,  $\hat{\Pi}$ ,  $\hat{\Pi}_2$ ,  $\hat{N}$ ,  $\hat{\Lambda}$  and  $\hat{K}$ .
- ▶ Quantum constr.  $\hat{C} = \int \hat{\varphi}^{\dagger} \mathcal{D} \hat{\varphi} = m^2 \hat{N} \hat{\Lambda} \lambda \hat{\Pi}_2$ . ▶  $\hat{K}$  such that  $[\hat{\Lambda}, \hat{K}] = i\hbar \alpha \hat{K}$ .

#### **Expectation values and variances**

- ightharpoonup Choose  $\hat{K}$  as clock variable.
- ▶ Relational evolution of  $\langle \hat{\chi} \rangle$  in agreement with classical cosmology.
- ► Fluctuations are decoupled from expect. values.
- ▶ If they are small at small  $\langle \hat{K} \rangle$  they stay small even at large  $\langle \hat{K} \rangle$  (due to a constant  $\langle \hat{N} \rangle$ ).

LM, Gielen, Oriti, Polaczek 2110.11176.

Luca Marchetti

Continuum Physics from GFTs



Pirsa: 23120046 Page 28/32

#### Scalar perturbations from quantum entanglement

#### Classical

- ▶ 4 MCMF reference fields  $(\chi^0, \chi^i)$ ,
- ▶ 1 MCMF matter field  $\phi$  dominating the energy-momentum budget and slightly relationally inhomogeneous wrt.  $\chi'$ .

Quantum

- ▶ Quanta with spacelike (+) and timelike (-) character to causally couple the physical frame.
- ► Geometry from quantum entanglement: inhomogeneities from QG correlations.

Two-sector GFT

- ▶ BC model:  $\varphi_{\pm} \equiv \varphi(g_a, X_{\pm}, \Phi)$ , with  $\Phi = (\chi^{\mu}, \phi) \in \mathbb{R}^5$  and  $K_{GFT} = K_+ + K_-$
- Since  $\chi^0$  ( $\chi^i$ ) propagates along timelike (spacelike) edges:

 $K_{+}$  independent of  $\chi^{i}$ .  $K_{-}$  independent of  $\chi^{0}$ .

Two-body correlations

notation: 
$$(\cdot\,,\,\cdot)=\int_{\Omega}\!\mathrm{d}\Omega\,\cdot\,\times\,\cdot$$

#### Background

- ightharpoonup au,  $\sigma$  peaked;  $ilde{ au}$ ,  $ilde{\sigma}$  homogeneous.

#### Perturbations

- $\bullet \quad \hat{\sigma} = (\sigma, \hat{\varphi}_+^\dagger): \text{ spacelike condensate. } \bullet \quad \widehat{\delta \Phi} = (\delta \Phi, \hat{\varphi}_+^\dagger \hat{\varphi}_+^\dagger), \ \widehat{\delta \Psi} = (\delta \Psi, \hat{\varphi}_+^\dagger \hat{\varphi}_-^\dagger), \ \widehat{\delta \Xi} = (\delta \Xi, \hat{\varphi}_-^\dagger \hat{\varphi}_-^\dagger).$
- $\hat{\tau} = (\tau, \hat{\varphi}_{-}^{\dagger})$ : timelike condensate.  $\hat{\delta}\Phi$ ,  $\delta\Psi$  and  $\delta\Xi$  small and relationally inhomogeneous.
  - ► Pert. = rel. nearest neighbour 2-body correlations.

Jercher, LM, Pithis 2310.17549-2308.13261; LM, Oriti 2112.12677; Jercher, Oriti, Pithis 2206.15442.

Luca Marchetti

Continuum Physics from GFTs

 $|\Delta\rangle = \mathcal{N}_{\psi} \exp(\hat{\sigma} \otimes \mathbb{I}_{-} + \mathbb{I}_{+} \otimes \widehat{\tau} + \widehat{\delta \Phi} \otimes \mathbb{I}_{-} + \widehat{\delta \Psi} + \mathbb{I}_{+} \otimes \widehat{\delta \Xi}) |0\rangle$ 

#### **Emergent dynamics of cosmic inhomogeneities**

E.o.m.

#### Mean-field dynamics

▶ 2 mean-field eqs. for 3 variables  $(\delta \Phi, \delta \Psi, \delta \Xi)$ :

$$\left\langle \delta S/\delta \hat{\varphi}_{+}^{\dagger}\right\rangle _{\Delta}=0=\left\langle \delta S/\delta \hat{\varphi}_{-}^{\dagger}\right\rangle _{\Delta}$$

► Late times and single (spacelike) rep. label.

► Physics captured by rel. localized averages:

$$\langle \hat{\mathcal{O}}_{\mathsf{GFT}} \rangle_{\Delta} = \bar{\mathcal{O}}_{\mathsf{GFT}}(x^0) + \delta \mathcal{O}_{\mathsf{GFT}}(x^0, \mathbf{x}).$$

Classical limit fixes dynamical freedom.

#### Classical dynamics with trans-Planckian QG effects

- Scalar (isotropic) perturbations dynamics from dynamics of QG correlations  $(\delta \Phi, \delta \Psi, \delta \Xi)$ .
- ightharpoonup E.g.: matter  $\delta\phi_{\mathsf{GFT}}$  and "curvature-like"  $\tilde{\mathcal{R}}$ :

$$\delta\phi_{\mathsf{GFT}}^{\prime\prime\prime} + k^2 a^4 \delta\phi_{\mathsf{GFT}} = \left(\frac{a^2 k}{M_{\mathsf{pl}}}\right) j_{\phi}[\bar{\phi}] \,,$$

$$\tilde{\mathcal{R}}_{\mathsf{GFT}}^{\prime\prime} + k^2 a^4 \tilde{\mathcal{R}}_{\mathsf{GFT}} = \left(\frac{a^2 k}{M_{\mathsf{pl}}}\right) j_{\tilde{\mathcal{R}}}[\bar{\phi}],$$

- Trans-Planckian QG corrections to the dynamics of scalar isotropic perturbations.
- ✓ Remarkable agreement with GR at larger scales.



Top:  $\tilde{\mathcal{R}}_{GFT}$  (blue) and  $\tilde{\mathcal{R}}_{GR}$  (dashed red) for  $k/M_{Pl}=10^2$ . Bottom: their difference  $\Delta \tilde{\mathcal{R}}$ .

Jercher, LM, Pithis 2310.17549-2308.13261.

Luca Marchetti

Continuum Physics from GFTs



Pirsa: 23120046 Page 31/32



Pirsa: 23120046 Page 32/32