Title: Good quantum LDPC codes and how to decode them
Speakers: Shouzhen (Bailey) Gu
Series: Perimeter Institute Quantum Discussions
Date: December 13, 2023-11:00 AM
URL: https://pirsa.org/23120045
Abstract: The last few years have seen rapid progress in the development of quantum low-density parity-check (LDPC) codes. LDPC codes, defined by their constant weight check operators, can have much better parameters than their topological counterparts like the surface code. In particular, a series of pivotal works culminated in the discovery of asymptotically good LDPC codes--those with essentially optimal rate and distance scalings. These codes allow for the possibility fault-tolerant quantum computation with very low overhead. However, for a code to be used in practice, it is necessary to efficiently identify errors from measurement outcomes to get back into the codespace. In this talk, I will present a linear-time decoder for a family of asymptotically good codes called quantum Tanner codes. Furthermore, I will show that quantum Tanner codes support single-shot decoding, which means that one measurement round suffices to perform reliable quantum error correction, even in the presence of measurement errors. These results can be seen as a step toward making quantum LDPC codes more practical.

Zoom link https://pitp.zoom.us/j/94286584094?pwd=Q21IekhHZXI4Qlk4Y1B3MnNobmR6UT09

Good quantum LDPC codes and how to decode them

Shouzhen (Bailey) Gu
Caltech

Caltech

Perimeter Institute Quantum Discussions Seminar
December 13, 2023
arXiv:2206.06557, SG, C.A. Pattison, E. Tang
arXiv:2306.12470, SG, E. Tang, L. Caha, S.H. Choe, Z. He, A. Kubica

Quantum error correction

- Quantum error correction is needed to reduce the error rates of physical devices
- Space overhead
- Choice of code: code parameters
- Number of ancilla qubits needed
- Time overhead
- Implementing logical gates
- Decoding algorithm
- How can we achieve fault-tolerant quantum computation with the lowest overhead?

Outline

1. Space overhead of error correction: quantum LDPC codes
2. Time overhead of error correction: decoders for LDPC codes

- Decoding good quantum LDPC codes (arXiv:2206.06557)
- Single-shot decoding (arXiv:2306.12470)

3. Conclusions and open problems

Outline

1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes

- Decoding good quantum LDPC codes (arxiv:2206.06557)
- Single-shot decoding (arXiv:2306.12470)

3. Conclusions and open problems

The surface code

- Codespace is the simultaneous +1 eigenspace of all vertex and plaquette stabilizers
- Currently the leading candidate for practical implementation

[^0]
The surface code: pros and cons

Pros

- Geometrically local stabilizers
- Know how to implement, decode, perform logic, etc.

Cons

- Poor code parameters
- Code length n : number of physical qubits
- Dimension k : number of logical qubits
- Distance d : weight of the smallest nontrivial logical operator
- Surface code: $[[n, k=1, d=\Theta(\sqrt{n})]]=\left[\left[L^{2}, 1, L\right]\right]$
- High overhead for fault-tolerance

LDPC codes

- Bravyi-Poulin-Terhal bound [BPT10]: $k d^{2}=O(n)$ in 2D
- Relax condition on geometric locality
- Low-density parity-check: stabilizers are constant weight
- Low weight checks are easier to measure
- Important for fault-tolerance
- Best possible parameters for LDPC codes?

History of quantum LDPC codes

Code	$k($ Dim $)$	d (Dist)
Surface code [Kit03] - Geometrically local checks	1	$\Theta(\sqrt{n})$
Hypergraph product codes [TZ14, BH14] - Uses good classical codes	$\Theta(n)$	$\Theta(\sqrt{n})$
Fibre bundle codes [HHO21] - First to break the \sqrt{n} distance barrier	$\tilde{\Theta}\left(n^{3 / 5}\right)$	$\tilde{\Omega}\left(n^{3 / 5}\right)$
Lifted product codes [PK22b]	$\tilde{\Theta}\left(n^{\alpha}\right)$	$\tilde{\Omega}\left(n^{1-\alpha / 2}\right)$
Balanced product codes [BE21]	$\Theta\left(n^{4 / 5}\right)$	$\Omega\left(n^{3 / 5}\right)$
Expander lifted product codes [PK22a] - First good quantum LDPC code	$\Theta(n)$	$\Theta(n)$
Quantum Tanner codes [LZ22]	$\Theta(n)$	$\Theta(n)$
DHLV codes [DHLV22]	$\Theta(n)$	$\Theta(n)$

History of quantum LDPC codes

Code	$k($ Dim $)$	d (Dist)
Surface code [Kit03] - Geometrically local checks	1	$\Theta(\sqrt{n})$
Hypergraph product codes [TZ14, BH14] - Uses good classical codes	$\Theta(n)$	$\Theta(\sqrt{n})$
Fibre bundle codes [HHO21] - First to break the \sqrt{n} distance barrier	$\tilde{\Theta}\left(n^{3 / 5}\right)$	$\tilde{\Omega}\left(n^{3 / 5}\right)$
Lifted product codes [PK22b]	$\tilde{\Theta}\left(n^{\alpha}\right)$	$\tilde{\Omega}\left(n^{1-\alpha / 2}\right)$
Balanced product codes [BE21]	$\Theta\left(n^{4 / 5}\right)$	$\Omega\left(n^{3 / 5}\right)$
Expander lifted product codes [PK22a] - First good quantum LDPC code	$\Theta(n)$	$\Theta(n)$
Quantum Tanner codes [LZ22]	$\Theta(n)$	$\Theta(n)$
DHLV codes [DHLV22]	$\Theta(n)$	$\Theta(n)$

Constant space overhead

- Gottesman [Got14]: LDPC code with parameters $\left[\left[n, k=\Theta(n), d=\Omega\left(n^{\alpha}\right)\right]\right] \Longrightarrow$ constant space overhead
- Assumptions
- Long-range interactions
- Efficient decoder

Implementing LDPC codes

- Only geometrically local interactions
- Concatenate with surface codes [PKP23]
- All-to-all connectivity
- Proposal based on neutral atom arrays $\left[\mathrm{XAP}^{+} 23, \mathrm{VYL}^{+} 23\right]$
- Limited number of long-range connections
- Proposal using 2 long-range interactions per qubit $\left[\mathrm{BCG}^{+} 23\right]$

[^1]
Outline

1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes

- Decoding good quantum LDPC codes (arXiv:2206.06557)
- Single-shot decoding (arXiv:2306.12470)

3. Conclusions and open problems

How to correct errors: the decoding problem

- Unknown error e applied to a code state
- Extract syndrome by measuring stabilizers
- Input: syndrome σ of an error e
- Output: a correction \hat{f}
- Succeed if $e+\hat{f}$ is a stabilizer

Finding efficient decoders

- Should decode faster than errors accumulate
- Need to know Pauli frame for certain logical operations
- Intractable problem in general (NP/\#P complete)
- Efficient decoders for many codes exist
- Two settings for decoding
- Adversarial noise: decode any error of weight up to a constant fraction of the distance
- Stochastic noise: decoder random noise with high probability

Lightning overview of quantum Tanner codes [LZ22]

- Left-right Cayley complex (two-dimensional expanding object)
- Vertices $V=V_{X} \sqcup V_{Z}$
- Edges E
- Squares Q

- Qubits placed on squares Q
- S_{X} generated by checks on faces incident to vertices in V_{X}
- S_{Z} generated by checks on faces incident to vertices in V_{Z}

Distance of quantum Tanner codes

- Consider a nontrivial logical operator L
- Local check at vertex $v \Longrightarrow$ high weight around v
- Also must be high weight around neighbouring vertices v^{\prime}
- Expansion $\Longrightarrow L=\Omega(n)$
- Gives a code with parameters

$[[n, k=\Theta(n), d=\Theta(n)]]$

Decoding quantum Tanner codes

- Consider X error e of low weight
- e may satisfy all checks in its "bulk"
- Many violations near its "boundary"

Decoding quantum Tanner codes

- Consider X error e of low weight
- e may satisfy all checks in its "bulk"
- Many violations near its "boundary"
- Flipping qubits at the boundary of e will result in more satisfied checks

Potential-based decoder [GPT23]

1. For each $v \in V_{Z}$, determine a candidate correction ε_{v} on the qubits in its neighbourhood

- Choose ε_{v} to have minimal weight while satisfying all local checks at v

2. Compute a potential function $U=\sum_{v \in V_{Z}}\left|\varepsilon_{v}\right|$
3. At every step, flip qubits in a local
 region to decrease U
All stabilizer checks are satisfied when $U=0$.

Main theorem

Theorem (Potential-based decoder [GPT23])
There is a family of quantum Tanner codes with parameters $[[n, \Theta(n), \Theta(n)]]$ such that the potential-based decoder can correct all errors of weight $|e| \leq p^{*} n$, where p^{*} is a constant. The time complexity is $O(n)$.

Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters $[[n, \Theta(n), \Theta(n)]]$ such that the potential-based decoder can correct all errors of weight $|e| \leq p^{*} n$, where p^{*} is a constant. The time complexity is $O(n)$.

- First decoder to correct adversarial errors of weight $O(n)$
- Previous best [EKZ22]: $O(\sqrt{n \log n})$

Proof outline

Correctness

- Prove that for small errors, we can find a local correction to decrease the potential function $U=\sum_{v \in V_{Z}}\left|\varepsilon_{v}\right|$
- Prove that the error remains small throughout decoding, and the final codeword is equivalent to the original

Runtime

- Initialization: $O(n)$ time to compute potential function U
- Update: $O(n)$ iterations with constant number of updates in each iteration

Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters $[[n, \Theta(n), \Theta(n)]]$ such that the potential-based decoder can correct all errors of weight $|e| \leq p^{*} n$, where p^{*} is a constant. The time complexity is $O(n)$.

- First decoder to correct adversarial errors of weight $O(n)$
- Previous best [EKZ22]: $O(\sqrt{n \log n})$

Proof outline

Correctness

- Prove that for small errors, we can find a local correction to decrease the potential function $U=\sum_{v \in V_{Z}}\left|\varepsilon_{v}\right|$
- Prove that the error remains small throughout decoding, and the final codeword is equivalent to the original

Stochastic errors: existence of threshold

Corollary

For i.i.d. errors with probability $p<p^{*}$, the decoder succeeds with probability $1-O\left(e^{-a n}\right)$ with $a>0$.

Proof.

- By our main theorem, the decoder succeeds if $|e| \leq p^{*} n$
- Hoeffding's inequality: $\operatorname{Pr}\left(|e|>p^{*} n\right)<e^{-2 n\left(p^{*}-p\right)^{2}}$

Soundness

> Corollary
> If $|e|<p^{*} n$, then $|\sigma| \geq \rho|e|_{R}$ for a constant ρ.

Soundness

Corollary

If $|e|<p^{*} n$, then $|\sigma| \geq \rho|e|_{R}$ for a constant ρ.
Proof.

- e can be corrected to a codeword in at most U steps
- At most c_{1} are flipped in each step $\Longrightarrow|e|_{R} \leq c_{1} U$
- $|\sigma| \geq c_{2} U \geq \frac{c_{2}}{c_{1}}|e|_{R}$

Remarks on soundness property

- Weaker version of local testability
- An important property (also called clustering of approximate codewords) used in [ABN22] to show quantum Tanner codes give NLTS Hamiltonians

Outline

1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes

- Decoding good quantum LDPC codes (arXiv:2206.06557)
- Single-shot decoding (arXiv:2306.12470)

Dealing with measurement noise

- What if syndrome σ is corrupted?

Dealing with measurement noise

- What if syndrome σ is corrupted?
- Standard procedures
- Repeat measurement rounds [Sho96]: large time overhead
- Prepare ancilla offline [Ste97]: large space overhead
- Problems
- Could weaken the advantage of a quantum algorithm
- Must decode faster than errors accumulate

Single-shot error correction

- Alternative approach: single-shot quantum error correction [Bom15]
- Make progress in decoding with noisy syndrome data
- Can also consider adversarial or stochastic noise

Existing single-shot decoders

- Topological codes
- 4D toric code [BDMT17], 3D subsystem toric code [KV22], 3D gauge colour code [Bom15]
- Use redundancy of checks
- Expansion based LDPC code
- Quantum expander codes [FGL18]
- Expansion provides single-shot property
- Arbitrary stabilizer codes can be made single-shot [Cam19]
- May not keep LDPC property

[^2]
Definition of single-shot

Setup

- Input: noisy syndrome $\tilde{\sigma}$
- Data error e
- Syndrome error D
- Output: a correction \hat{f}

Definition

A decoder is (α, β)-single-shot if for sufficiently low-weight errors,

$$
|e+\hat{f}|_{R} \leq \alpha|e|_{R}+\beta|D|
$$

Mismatch decomposition decoder [LZ23]

- Also a local greedy decoder, but uses the mismatch $Z=\left|\sum_{v \in V_{Z}} \varepsilon_{v}\right|$ instead of the potential $U=\sum_{v \in V_{Z}}\left|\varepsilon_{v}\right|$
- At every step, flip qubits in some local region to decrease Z
- Stop when no more flips possible
- The algorithm can be run sequentially or in parallel
- Sequential decoder: $O(n)$ runtime
- Parallel decoder: $O(\log n)$ runtime

Why is this decoder single-shot?

- Recall: intuition that valid corrections are near the "boundary" of the error region
- Expansion \Longrightarrow large boundary \Longrightarrow many candidate corrections
- Syndrome noise can affect a limited number of these corrections

Main results for single-shot decoding

Theorem (Single-shot property [GTC ${ }^{+}$23])

There exists a constants β such that we have the following:

1. The sequential decoder is $(\alpha=0, \beta)$-single-shot.
2. The parallel decoder with k-iterations is

$$
\left(\alpha=2^{-\Omega(\hat{k})}, \beta\right) \text {-single-shot. }
$$

(Recall: (α, β)-single-shot means $\left.|e+\hat{f}|_{R} \leq \alpha|e|_{R}+\beta|D|.\right)$

Multiple rounds of errors (stochastic setting)

- For i.i.d. errors $\left(e_{i}, D_{i}\right)$ with probability $p<p^{*}$, quantum information is maintained for $\Omega\left(e^{a n}\right)$ rounds with probability $1-O\left(e^{-b n}\right)$ with $a, b>0$

Multiple rounds of errors (stochastic setting)

- For i.i.d. errors $\left(e_{i}, D_{i}\right)$ with probability $p<p^{*}$, quantum information is maintained for $\Omega\left(e^{a n}\right)$ rounds with probability $1-O\left(e^{-b r}\right)$ with $a, b>0$
- Generalizes to space/time correlated errors
- E.g. circuit noise

Constant-time decoding of quantum Tanner codes

- The k-iteration parallel decoder is ($\alpha=2^{-\Omega(k)}, \beta$)-single-shot
- Choose k a sufficiently large constant
- During the computation: residual errors are small (nonzero)
- Last round: measure all qubits in the Z basis
- Treat measurement errors as X qubit errors
- Use ideal $O(\log n)$-iteration parallel decoder or sequential decoder to recover information exactly $\left(|e+\hat{f}|_{R} \leq \alpha|e|_{R}+\beta|D|\right.$ with $\alpha=0$ and $\left.|D|=0\right)$
- Constant time overhead using quantum Tanner codes

Constant-time decoding of quantum Tanner codes

- The k-iteration parallel decoder is $\left(\alpha=2^{-\Omega(k)}, \beta\right)$-single-shot
- Choose k a sufficiently large constant
- During the computation: residual errors are small (nonzero)
- Last round: measure all qubits in the Z basis
- Treat measurement errors as X qubit errors
- Use ideal $O(\log n)$-iteration parallel decoder or sequential decoder to recover information exactly $\left(|e+\hat{f}|_{R} \leq \alpha|e|_{R}+\beta|D|\right.$ with $\alpha=0$ and $\left.|D|=0\right)$

Constant-time decoding of quantum Tanner codes

- The k-iteration parallel decoder is ($\alpha=2^{-\Omega(k)}, \beta$)-single-shot
- Choose k a sufficiently large constant
- During the computation: residual errors are small (nonzero)
- Last round: measure all qubits in the Z basis
- Treat measurement errors as X qubit errors
- Use ideal $O(\log n)$-iteration parallel decoder or sequential decoder to recover information exactly $\left(|e+\hat{f}|_{R} \leq \alpha|e|_{R}+\beta|D|\right.$ with $\alpha=0$ and $\left.|D|=0\right)$
- Constant time overhead using quantum Tanner codes

Conclusions

Summary

- Provably correct and efficient decoders for quantum Tanner codes
- Single-shot property of the sequential and parallel decoders
- Quantum error correction with constant space and time overhead

Open questions

- Logical gates for LDPC codes
- How to choose the right LDPC code to use?
- Decrease constants involved in the good code constructions
- General framework for analyzing local greedy decoders

[^0]: https://quantumai.google/cirq/experiments/toric_code/toric_code_ground_state

[^1]: https://arxiv.org/abs/2303.04798
 https://arxiv.org/abs/2308.08648
 https://arxiv.org/abs/2308.07915

[^2]: https://www.nature.com/articles/s41467-022-33923-4/figures/7
 https://arxiv.org/abs/2208.01002

