Title: Good quantum LDPC codes and how to decode them

Speakers: Shouzhen (Bailey) Gu

Series: Perimeter Institute Quantum Discussions

Date: December 13, 2023 - 11:00 AM

URL: https://pirsa.org/23120045

Abstract: The last few years have seen rapid progress in the development of quantum low-density parity-check (LDPC) codes. LDPC codes, defined by their constant weight check operators, can have much better parameters than their topological counterparts like the surface code. In particular, a series of pivotal works culminated in the discovery of asymptotically good LDPC codes--those with essentially optimal rate and distance scalings. These codes allow for the possibility fault-tolerant quantum computation with very low overhead. However, for a code to be used in practice, it is necessary to efficiently identify errors from measurement outcomes to get back into the codespace. In this talk, I will present a linear-time decoder for a family of asymptotically good codes called quantum Tanner codes. Furthermore, I will show that quantum Tanner codes support single-shot decoding, which means that one measurement round suffices to perform reliable quantum error correction, even in the presence of measurement errors. These results can be seen as a step toward making quantum LDPC codes more practical.

Zoom link https://pitp.zoom.us/j/94286584094?pwd=Q21IekhHZXI4Qlk4Y1B3MnNobmR6UT09

Pirsa: 23120045 Page 1/43

Good quantum LDPC codes and how to decode them

Shouzhen (Bailey) Gu Caltech

Perimeter Institute Quantum Discussions Seminar December 13, 2023

arXiv:2206.06557, **SG**, C.A. Pattison, E. Tang arXiv:2306.12470, SG, E. Tang, L. Caha, S.H. Choe, Z. He, A. Kubica

Pirsa: 23120045 Page 2/43

Quantum error correction

- Quantum error correction is needed to reduce the error rates of physical devices
- Space overhead
 - Choice of code: code parameters
 - Number of ancilla qubits needed
- Time overhead
 - Implementing logical gates
 - Decoding algorithm
- How can we achieve fault-tolerant quantum computation with the lowest overhead?

2

Pirsa: 23120045 Page 3/43

Outline

- 1. Space overhead of error correction: quantum LDPC codes
- 2. Time overhead of error correction: decoders for LDPC codes
 - Decoding good quantum LDPC codes (arXiv:2206.06557)
 - Single-shot decoding (arXiv:2306.12470)
- 3. Conclusions and open problems

3

Pirsa: 23120045 Page 4/43

Outline

- 1. Space overhead of error correction: quantum LDPC codes
- 2. Time overhead of error correction: decoders for LDPC codes
 - Decoding good quantum LDPC codes (arXiv:2206.06557)
 - Single-shot decoding (arXiv:2306.12470)
- 3. Conclusions and open problems

1

Pirsa: 23120045 Page 5/43

The surface code

- ullet Codespace is the simultaneous +1 eigenspace of all vertex and plaquette stabilizers
- Currently the leading candidate for practical implementation

https://quantumai.google/cirq/experiments/toric_code/toric_code_ground_state

F

Pirsa: 23120045 Page 6/43

The surface code: pros and cons

Pros

- Geometrically local stabilizers
- Know how to implement, decode, perform logic, etc.

Cons

- Poor code parameters
 - Code length *n*: number of physical qubits
 - Dimension k: number of logical qubits
 - Distance d: weight of the smallest nontrivial logical operator
 - Surface code: $[[n, k = 1, d = \Theta(\sqrt{n})]] = [[L^2, 1, L]]$
- High overhead for fault-tolerance

6

Pirsa: 23120045 Page 7/43

LDPC codes

- Bravyi-Poulin-Terhal bound [BPT10]: $kd^2 = O(n)$ in 2D
- Relax condition on geometric locality
- Low-density parity-check: stabilizers are constant weight
 - Low weight checks are easier to measure
 - Important for fault-tolerance
- Best possible parameters for LDPC codes?

7

Pirsa: 23120045 Page 8/43

History of quantum LDPC codes

Code	k (Dim)	d (Dist)
Surface code [Kit03]	1	$\Theta(\sqrt{n})$
Geometrically local checks		
Hypergraph product codes [TZ14, BH14]	$\Theta(n)$	$\Theta(\sqrt{n})$
Uses good classical codes		
Fibre bundle codes [HHO21]	$\tilde{\Theta}(n^{3/5})$	$\tilde{\Omega}(n^{3/5})$
• First to break the \sqrt{n} distance barrier		
Lifted product codes [PK22b]	$ ilde{\Theta}(\mathit{n}^{lpha})$	$\tilde{\Omega}(n^{1-lpha/2})$
Balanced product codes [BE21]	$\Theta(n^{4/5})$	$\Omega(n^{3/5})$
Expander lifted product codes [PK22a]	$\Theta(n)$	$\Theta(n)$
 First good quantum LDPC code 		
Quantum Tanner codes [LZ22]	$\Theta(n)$	$\Theta(n)$
DHLV codes [DHLV22]	$\Theta(n)$	$\Theta(n)$

8

Pirsa: 23120045

History of quantum LDPC codes

Code	k (Dim)	d (Dist)
Surface code [Kit03]	1	$\Theta(\sqrt{n})$
Geometrically local checks		
Hypergraph product codes [TZ14, BH14]	$\Theta(n)$	$\Theta(\sqrt{n})$
Uses good classical codes		
Fibre bundle codes [HHO21]	$\tilde{\Theta}(n^{3/5})$	$\tilde{\Omega}(n^{3/5})$
• First to break the \sqrt{n} distance barrier		
Lifted product codes [PK22b]	$ ilde{\Theta}(\mathit{n}^{lpha})$	$\tilde{\Omega}(n^{1-lpha/2})$
Balanced product codes [BE21]	$\Theta(n^{4/5})$	$\Omega(n^{3/5})$
Expander lifted product codes [PK22a]	$\Theta(n)$	$\Theta(n)$
First good quantum LDPC code		
Quantum Tanner codes [LZ22]	$\Theta(n)$	$\Theta(n)$
DHLV codes [DHLV22]	$\Theta(n)$	$\Theta(n)$

O

Pirsa: 23120045

Constant space overhead

- Gottesman [Got14]: LDPC code with parameters $[[n,k=\Theta(n),d=\Omega(n^{lpha})]] \implies$ constant space overhead
- Assumptions

- Long-range interactions
- Efficient decoder

Implementing LDPC codes

- Only geometrically local interactions
 - Concatenate with surface codes [PKP23]
- All-to-all connectivity
 - Proposal based on neutral atom arrays [XAP+23, VYL+23]
- Limited number of long-range connections
 - Proposal using 2 long-range interactions per qubit [BCG⁺23]

https://arxiv.org/abs/2303.04798

https://arxiv.org/abs/2308.08648

https://arxiv.org/abs/2308.07915

10

Pirsa: 23120045 Page 12/43

Outline

- Space overhead of error correction: quantum LDPC codes
- 2. Time overhead of error correction: decoders for LDPC codes
 - Decoding good quantum LDPC codes (arXiv:2206.06557)
 - Single-shot decoding (arXiv:2306.12470)
- 3. Conclusions and open problems

12

Pirsa: 23120045 Page 13/43

How to correct errors: the decoding problem

- Unknown error e applied to a code state
- Extract syndrome by measuring stabilizers
- ullet Input: syndrome σ of an error e
- Output: a correction \hat{f}
- Succeed if $e + \hat{f}$ is a stabilizer

13

Pirsa: 23120045 Page 14/43

Finding efficient decoders

- Should decode faster than errors accumulate
 - Need to know Pauli frame for certain logical operations
- Intractable problem in general (NP/#P complete)
- Efficient decoders for many codes exist
- Two settings for decoding
 - Adversarial noise: decode any error of weight up to a constant fraction of the distance
 - Stochastic noise: decoder random noise with high probability

14

Pirsa: 23120045 Page 15/43

Lightning overview of quantum Tanner codes [LZ22]

- Left-right Cayley complex (two-dimensional expanding object)
 - Vertices $V = V_X \sqcup V_Z$
 - Edges *E*
 - Squares Q
- Qubits placed on squares Q
- S_X generated by checks on faces incident to vertices in V_X
- S_Z generated by checks on faces incident to vertices in V_Z

15

Pirsa: 23120045 Page 16/43

Distance of quantum Tanner codes

- Consider a nontrivial logical operator *L*
- Local check at vertex $v \Longrightarrow high$ weight around v
- Also must be high weight around neighbouring vertices v'
- Expansion $\implies L = \Omega(n)$
- Gives a code with parameters $[[n, k = \Theta(n), d = \Theta(n)]]$

16

Pirsa: 23120045 Page 17/43

Decoding quantum Tanner codes

- Consider X error e of low weight
- e may satisfy all checks in its "bulk"
- Many violations near its "boundary"

17

Pirsa: 23120045 Page 18/43

Decoding quantum Tanner codes

- Consider X error e of low weight
- e may satisfy all checks in its "bulk"
- Many violations near its "boundary"
- Flipping qubits at the boundary of e
 will result in more satisfied checks

17

Pirsa: 23120045 Page 19/43

Potential-based decoder [GPT23]

- 1. For each $v \in V_Z$, determine a candidate correction ε_v on the qubits in its neighbourhood
 - Choose ε_v to have minimal weight while satisfying all local checks at v
- 2. Compute a potential function $U = \sum_{v \in V_Z} |\varepsilon_v|$
- 3. At every step, flip qubits in a local region to decrease \boldsymbol{U}

All stabilizer checks are satisfied when U=0.

18

Pirsa: 23120045 Page 20/43

Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters $[[n, \Theta(n), \Theta(n)]]$ such that the potential-based decoder can correct all errors of weight $|e| \leq p^*n$, where p^* is a constant. The time complexity is O(n).

19

Pirsa: 23120045 Page 21/43

Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters $[[n, \Theta(n), \Theta(n)]]$ such that the potential-based decoder can correct all errors of weight $|e| \leq p^*n$, where p^* is a constant. The time complexity is O(n).

- First decoder to correct adversarial errors of weight O(n)
- Previous best [EKZ22]: $O(\sqrt{n \log n})$

19

Pirsa: 23120045 Page 22/43

Proof outline

Correctness

- Prove that for small errors, we can find a local correction to decrease the potential function $U = \sum_{v \in V_Z} |\varepsilon_v|$
- Prove that the error remains small throughout decoding, and the final codeword is equivalent to the original

Runtime

- Initialization: O(n) time to compute potential function U
- Update: O(n) iterations with constant number of updates in each iteration

20

Pirsa: 23120045 Page 23/43

Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters $[[n, \Theta(n), \Theta(n)]]$ such that the potential-based decoder can correct all errors of weight $|e| \leq p^*n$, where p^* is a constant. The time complexity is O(n).

- First decoder to correct adversarial errors of weight O(n)
- Previous best [EKZ22]: $O(\sqrt{n \log n})$

19

Pirsa: 23120045 Page 24/43

Proof outline

Correctness

- Prove that for small errors, we can find a local correction to decrease the potential function $U = \sum_{v \in V_7} |\varepsilon_v|$
- Prove that the error remains small throughout decoding, and the final codeword is equivalent to the original

20

Pirsa: 23120045 Page 25/43

Stochastic errors: existence of threshold

Corollary

For i.i.d. errors with probability $p < p^*$, the decoder succeeds with probability $1 - O(e^{-an})$ with a > 0.

Proof.

- ullet By our main theorem, the decoder succeeds if $|e| \leq p^*n$
- Hoeffding's inequality: $Pr(|e| > p^*n) < e^{-2n(p^*-p)^2}$

21

Soundness

Corollary

If $|e| < p^*n$, then $|\sigma| \ge \rho |e|_R$ for a constant ρ .

22

Pirsa: 23120045 Page 27/43

Soundness

Corollary

If $|e| < p^*n$, then $|\sigma| \ge \rho |e|_R$ for a constant ρ .

Proof.

- \bullet e can be corrected to a codeword in at most U steps
- At most c_1 are flipped in each step $\implies |e|_R \le c_1 U$
- $|\sigma| \ge c_2 U \ge \frac{c_2}{c_1} |e|_R$

Remarks on soundness property

- Weaker version of local testability
- An important property (also called clustering of approximate codewords) used in [ABN22] to show quantum Tanner codes give NLTS Hamiltonians

22

Pirsa: 23120045 Page 28/43

Outline

- 1. Space overhead of error correction: quantum LDPC codes
- 2. Time overhead of error correction: decoders for LDPC codes
 - Decoding good quantum LDPC codes (arXiv:2206.06557)
 - Single-shot decoding (arXiv:2306.12470)
- 3. Conclusions and open problems

23

Pirsa: 23120045 Page 29/43

Dealing with measurement noise

ullet What if syndrome σ is corrupted?

24

Pirsa: 23120045 Page 30/43

Dealing with measurement noise

- What if syndrome σ is corrupted?
- Standard procedures
 - Repeat measurement rounds [Sho96]: large time overhead
 - Prepare ancilla offline [Ste97]: large space overhead
- Problems
 - Could weaken the advantage of a quantum algorithm
 - Must decode faster than errors accumulate

Pirsa: 23120045

24

Single-shot error correction

- Alternative approach: single-shot quantum error correction [Bom15]
 - Make progress in decoding with noisy syndrome data
- Can also consider adversarial or stochastic noise

O

25

Pirsa: 23120045 Page 32/43

Existing single-shot decoders

- Topological codes
 - 4D toric code [BDMT17], 3D subsystem toric code [KV22], 3D gauge colour code [Bom15]
 - Use redundancy of checks
- Expansion based LDPC code
 - Quantum expander codes [FGL18]
 - Expansion provides single-shot property
- Arbitrary stabilizer codes can be made single-shot [Cam19]
 - May not keep LDPC property

https://www.nature.com/articles/s41467-022-33923-4/figures/7https://arxiv.org/abs/2208.01002

26

Pirsa: 23120045 Page 33/43

Definition of single-shot

Setup

- ullet Input: noisy syndrome $ilde{\sigma}$
 - Data error e
 - Syndrome error *D*
- ullet Output: a correction \hat{f}

Definition

A decoder is (α, β) -single-shot if for sufficiently low-weight errors,

$$|e + \hat{f}|_R \le \alpha |e|_R + \beta |D|$$
.

27

Pirsa: 23120045 Page 34/43

Mismatch decomposition decoder [LZ23]

- Also a local greedy decoder, but uses the mismatch $Z = \left| \sum_{v \in V_Z} \varepsilon_v \right|$ instead of the potential $U = \sum_{v \in V_Z} |\varepsilon_v|$
- \bullet At every step, flip qubits in some local region to decrease Z
 - Stop when no more flips possible
- The algorithm can be run sequentially or in parallel
 - Sequential decoder: O(n) runtime
 - Parallel decoder: $O(\log n)$ runtime

28

Why is this decoder single-shot?

- Recall: intuition that valid corrections are near the "boundary" of the error region
- Expansion \Longrightarrow large boundary \Longrightarrow many candidate corrections
- Syndrome noise can affect a limited number of these corrections

29

Pirsa: 23120045 Page 36/43

Main results for single-shot decoding

Theorem (Single-shot property [GTC⁺23])

There exists a constants β such that we have the following:

- 1. The sequential decoder is $(\alpha = 0, \beta)$ -single-shot.
- 2. The parallel decoder with k-iterations is $(\alpha = 2^{-\Omega(k)}, \beta)$ -single-shot.

(Recall: (α, β) -single-shot means $|e + \hat{f}|_R \le \alpha |e|_R + \beta |D|$.)

30

Pirsa: 23120045 Page 37/43

Multiple rounds of errors (stochastic setting)

• For i.i.d. errors (e_i, D_i) with probability $p < p^*$, quantum information is maintained for $\Omega(e^{an})$ rounds with probability $1 - O(e^{-bn})$ with a, b > 0

31

Pirsa: 23120045 Page 38/43

Multiple rounds of errors (stochastic setting)

- For i.i.d. errors (e_i, D_i) with probability $p < p^*$, quantum information is maintained for $\Omega(e^{an})$ rounds with probability $1 O(e^{-bn})$ with a, b > 0
- Generalizes to space/time correlated errors
 - E.g. circuit noise

31

Pirsa: 23120045 Page 39/43

Constant-time decoding of quantum Tanner codes

- The *k*-iteration parallel decoder is $(\alpha = 2^{-\Omega(k)}, \beta)$ -single-shot
 - Choose *k* a sufficiently large constant
- During the computation: residual errors are small (nonzero)
- Last round: measure all qubits in the Z basis
 - Treat measurement errors as X qubit errors
 - Use ideal $O(\log n)$ -iteration parallel decoder or sequential decoder to recover information exactly $(|e+\hat{f}|_R \leq \alpha |e|_R + \beta |D| \text{ with } \alpha = 0 \text{ and } |D| = 0)$
- Constant time overhead using quantum Tanner codes

32

Pirsa: 23120045 Page 40/43

Constant-time decoding of quantum Tanner codes

- The *k*-iteration parallel decoder is $(\alpha = 2^{-\Omega(k)}, \beta)$ -single-shot
 - Choose *k* a sufficiently large constant
- During the computation: residual errors are small (nonzero)
- Last round: measure all qubits in the Z basis
 - Treat measurement errors as X qubit errors
 - Use ideal $O(\log n)$ -iteration parallel decoder or sequential decoder to recover information exactly $(|e+\hat{f}|_R \leq \alpha |e|_R + \beta |D| \text{ with } \alpha = 0 \text{ and } |D| = 0)$

32

Pirsa: 23120045 Page 41/43

Constant-time decoding of quantum Tanner codes

- The *k*-iteration parallel decoder is $(\alpha = 2^{-\Omega(k)}, \beta)$ -single-shot
 - Choose *k* a sufficiently large constant
- During the computation: residual errors are small (nonzero)
- Last round: measure all qubits in the Z basis
 - Treat measurement errors as X qubit errors
 - Use ideal $O(\log n)$ -iteration parallel decoder or sequential decoder to recover information exactly $(|e+\hat{f}|_R \leq \alpha |e|_R + \beta |D| \text{ with } \alpha = 0 \text{ and } |D| = 0)$
- Constant time overhead using quantum Tanner codes

32

Pirsa: 23120045 Page 42/43

Conclusions

Summary

- Provably correct and efficient decoders for quantum Tanner codes
- Single-shot property of the sequential and parallel decoders
- Quantum error correction with constant space and time overhead

Open questions

- Logical gates for LDPC codes
- How to choose the right LDPC code to use?
 - Decrease constants involved in the good code constructions
- General framework for analyzing local greedy decoders

Pirsa: 23120045

34