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Abstract: The last few years have seen rapid progress in the development of quantum low-density parity-check (LDPC) codes. LDPC codes, defined
by their constant weight check operators, can have much better parameters than their topological counterparts like the surface code. In particular, a
series of pivotal works culminated in the discovery of asymptotically good LDPC codes--those with essentially optimal rate and distance scalings.
These codes allow for the possibility fault-tolerant quantum computation with very low overhead. However, for a code to be used in practice, it is
necessary to efficiently identify errors from measurement outcomes to get back into the codespace. In this talk, | will present a linear-time decoder
for afamily of asymptotically good codes called quantum Tanner codes. Furthermore, | will show that quantum Tanner codes support single-shot
decoding, which means that one measurement round suffices to perform reliable quantum error correction, even in the presence of measurement
errors. These results can be seen as a step toward making quantum L DPC codes more practical.

Zoom link https://pitp.zoom.us/j/942865840947pwd=Q21lekhHZX14Qlk4Y 1B3MnNobmR6UT09
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Quantum error correction

Quantum error correction is needed to reduce the error rates
of physical devices
Space overhead

e Choice of code: code parameters
e Number of ancilla qubits needed

Time overhead
e Implementing logical gates
e Decoding algorithm
How can we achieve fault-tolerant quantum computation with

the lowest overhead?
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1. Space overhead of error correction: quantum LDPC codes

2. Time overhead of error correction: decoders for LDPC codes

e Decoding good quantum LDPC codes (arXiv:2206.06557)

e Single-shot decoding (arXiv:2306.12470)

3. Conclusions and open problems
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1. Space overhead of error correction: quantum LDPC codes
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The surface code

e Codespace is the simultaneous +1 eigenspace of all vertex and

plaquette stabilizers

e Currently the leading candidate for practical implementation

https://quantumai.google/cirq/experiments/toric_code/toric_code_ground_state
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The surface code: pros and cons

Pros
e Geometrically local stabilizers

e Know how to implement, decode, perform logic, etc.

Cons

e Poor code parameters
e Code length n: number of physical qubits
e Dimension k: number of logical qubits

e Distance d: weight of the smallest nontrivial logical operator
e Surface code: [[n,k =1,d = O(\/n)]] = [[L%, 1, L]]

e High overhead for fault-tolerance
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LDPC codes

Bravyi-Poulin-Terhal bound [BPT10]: kd? = O(n) in 2D
Relax condition on geometric locality

Low-density parity-check: stabilizers are constant weight

e Low weight checks are easier to measure
e Important for fault-tolerance

Best possible parameters for LDPC codes?
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History of quantum LDPC codes

Code

Surface code [Kit03]

e Geometrically local checks
Hypergraph product codes [TZ14, BH14]
e Uses good classical codes

Fibre bundle codes [HHO21]

e First to break the /n distance barrier
Lifted product codes [PK22b]

Balanced product codes [BE21]
Expander lifted product codes [PK22a]

e First good quantum LDPC code
Quantum Tanner codes [LZ22]

DHLV codes [DHLV22]

Pirsa: 23120045 Page 9/43



History of quantum LDPC codes

Code

Surface code [Kit03]

e Geometrically local checks
Hypergraph product codes [TZ14, BH14]
e Uses good classical codes

Fibre bundle codes [HHO21]

e First to break the /n distance barrier
Lifted product codes [PK22b]

Balanced product codes [BE21]
Expander lifted product codes [PK22a]

e First good quantum LDPC code
Quantum Tanner codes [LZ22]

DHLV codes [DHLV22]

Pirsa: 23120045 Page 10/43



Constant space overhead

e Gottesman [Gotl4]: LDPC code with parameters
[[n,k =©(n),d =Q(n%)]] = constant space overhead

e Assumptions
O,

e Long-range interactions

e Efficient decoder
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Implementing LDPC codes

e Only geometrically local interactions

e Concatenate with surface
codes [PKP23]

e All-to-all connectivity
e Proposal based on neutral atom
arrays [XAP723, VYL"23]

e Limited number of long-range
connections

e Proposal using 2 long-range
interactions per qubit [BCGT23]

https://arxiv.org/abs/2303.04798
https://arxiv.org/abs/2308.08648
https://arxiv.org/abs/2308.07915
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2. Time overhead of error correction: decoders for LDPC codes

e Decoding good quantum LDPC codes (arXiv:2206.06557)
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How to correct errors: the decoding problem

Unknown error e applied to a code state
Extract syndrome by measuring stabilizers
Input: syndrome o of an error e

~

Output: a correction f

Succeed if e - f is a stabilizer
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Finding efficient decoders

Should decode faster than errors accumulate

e Need to know Pauli frame for certain logical operations

Intractable problem in general (NP /#P complete)

Efficient decoders for many codes exist
Two settings for decoding

e Adversarial noise: decode any error of weight up to a constant
fraction of the distance

e Stochastic noise: decoder random noise with high probability
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Lightning overview of quantum Tanner codes [LZ22]

Left-right Cayley complex
(two-dimensional expanding object)

e Vertices V = Vx U V>,
o Edges E
e Squares @

Qubits placed on squares @

Sx generated by checks on faces

incident to vertices in Vx

Sz generated by checks on faces
incident to vertices in V>,
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Distance of quantum Tanner codes

Consider a nontrivial logical operator L

Local check at vertex v = high
weight around v

Also must be high weight around

neighbouring vertices v/

Expansion = L = Q(n)

Gives a code with parameters

[[n, k= ©(n),d = O(n)]]
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Decoding quantum Tanner codes

e Consider X error e of low weight
e e may satisfy all checks in its “bulk”

e Many violations near its “boundary”
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Decoding quantum Tanner codes

Consider X error e of low weight
e may satisfy all checks in its “bulk”
Many violations near its “boundary”

Flipping qubits at the boundary of e

will result in more satisfied checks
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Potential-based decoder [GPT23]

1. For each v € V7, determine a
candidate correction £, on the qubits
in its neighbourhood

e Choose ¢, to have minimal weight

while satisfying all local checks at v

. Compute a potential function
U=2 ey, lev]
3. At every step, flip qubits in a local
region to decrease U

All stabilizer checks are satisfied when U = 0.
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Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters
[[n,©(n),©(n)]] such that the potential-based decoder can correct
all errors of weight |e| < p*n, where p* is a constant. The time

complexity is O(n).
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Main theorem

Theorem (Potential-based decoder [GPT23])

There is a family of quantum Tanner codes with parameters
[[n,©(n),O(n)]] such that the potential-based decoder can correct
all errors of weight |e| < p*n, where p* is a constant. The time
complexity is O(n).

e First decoder to correct adversarial errors of weight O(n)

e Previous best [EKZ22]: O(y/nlog n)
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Proof outline

Correctness
e Prove that for small errors, we can find a local correction to
decrease the potential function U =} _ ., |e|
e Prove that the error remains small throughout decoding, and

the final codeword is equivalent to the original

Runtime

e Initialization: O(n) time to compute potential function U

e Update: O(n) iterations with constant number of updates in

each iteration
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Proof outline
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Stochastic errors: existence of threshold

Corollary

For i.i.d. errors with probability p < p*, the decoder succeeds with
probability 1 — O(e™?") with a > 0.

Proof.

e By our main theorem, the decoder succeeds if |e| < p*n

e Hoeffding's inequality: Pr(|e| > p*n) < o—2n(p*—p)*
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Corollary

If |e| < p*n, then |o| > ple|r for a constant p.
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Corollary
If |e| < p*n, then |o| > ple|r for a constant p.
Proof.
e ¢ can be corrected to a codeword in at most U steps

e At most c; are flipped in each step = |e|lg < U

o 0| > U > Zlelr

Remarks on soundness property
e Weaker version of local testability

e An important property (also called clustering of approximate
codewords) used in [ABN22] to show quantum Tanner codes
give NLTS Hamiltonians
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2. Time overhead of error correction: decoders for LDPC codes

e Single-shot decoding (arXiv:2306.12470)
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Dealing with measurement noise

e What if syndrome o is corrupted?
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Dealing with measurement noise

e What if syndrome o is corrupted?
e Standard procedures

e Repeat measurement rounds [Sho96]: large time overhead
e Prepare ancilla offline [Ste97]: large space overhead

e Problems

e Could weaken the advantage of a quantum algorithm
e Must decode faster than errors accumulate
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Single-shot error correction

e Alternative approach: single-shot quantum error
correction [Bom15]

e Make progress in decoding with noisy syndrome data

e Can also consider adversarial or stochastic noise

®»
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Existing single-shot decoders

e Topological codes

e 4D toric code [BDMT17], 3D subsystem
toric code [KV22], 3D gauge colour
code [Bom15]

e Use redundancy of checks

e Expansion based LDPC code

e Quantum expander codes [FGL18]
e Expansion provides single-shot property

QO Qubits
O Qubits

© Z stabilizer
genarators

>

Do o0o00O00

e Arbitrary stabilizer codes can be made
single-shot [Cam19]

o X stabilizer
generators

OO0 000000
ggg o000QQC0
CoE 000000
OgdQ o000Q00
Ogpg o000 0O0

@

e May not keep LDPC property

https://www.nature.com/articles/s41467-022-33923-4/figures/7
https://arxiv.org/abs/2208.01002
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Definition of single-shot

Setup

e Input: noisy syndrome &

e Data error e
e Syndrome error D

A

e Output: a correction f

Definition

A decoder is (o, [3)-single-shot if for sufficiently low-weight errors,

e+ flr < ale|r + B|D].
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Mismatch decomposition decoder [LZ23]

e Also a local greedy decoder, but uses the mismatch
Zz — ‘Zvevz ev| instead of the potential U =}_ .\, |e/|

e At every step, flip qubits in some local region to decrease /
e Stop when no more flips possible
e The algorithm can be run sequentially or in parallel

e Sequential decoder: O(n) runtime
e Parallel decoder: O(log n) runtime
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Why is this decoder single-shot?

e Recall: intuition that valid
corrections are near the

“boundary” of the error region

e Expansion — large boundary

— many candidate corrections

e Syndrome noise can affect a

limited number of these corrections
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Main results for single-shot decoding

Theorem (Single-shot property [GTC"23])

There exists a constants 3 such that we have the following:

1. The sequential decoder is (o« = 0, 3)-single-shot.

2. The parallel decoder with k-iterations is
(a = 2_9(%, 3)-single-shot.

(Recall: (v, B)-single-shot means |e + f|r < ale|r + 3|D|.)

Page 37/43



Multiple rounds of errors (stochastic setting)

Measure

Error D

v

e Fori.i.d. errors (e;, D;) with probability p < p*, quantum
information is maintained for Q(e") rounds with probability
1 — O(e ") with a,b >0
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Multiple rounds of errors (stochastic setting)

Measure

Error D

v

e Fori.i.d. errors (e;, D;) with probability p < p*, quantum
information is maintained for (e") rounds with probability
1 — O(e ") with a,b >0

e Generalizes to space/time correlated errors

e E.g. circuit noise
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Constant-time decoding of quantum Tanner codes

The k-iteration parallel decoder is (a = 27%¥) | 3)-single-shot

e Choose k a sufficiently large constant

During the computation: residual errors are small (nonzero)
Last round: measure all qubits in the Z basis

e Treat measurement errors as X qubit errors

e Use ideal O(log n)-iteration parallel decoder or sequential
decoder to recover information exactly

(le + f|r < ale|gr + B|D| with & = 0 and |D| = 0)

Constant time overhead using quantum Tanner codes
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Constant-time decoding of quantum Tanner codes
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Summary

e Provably correct and efficient decoders for quantum Tanner codes
e Single-shot property of the sequential and parallel decoders

e Quantum error correction with constant space and time overhead

Open questions

e Logical gates for LDPC codes
e How to choose the right LDPC code to use?

e Decrease constants involved in the good code constructions

e General framework for analyzing local greedy decoders
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