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Abstract: In this presentation, | will discuss two distinct topics, one relating to the foundational aspects of LQG and the other concerning its
applicational implications.

Firstly, I will explore the U(1)*3 model of Euclidean Quantum Gravity, which serves as an interesting testing ground for the dynamics problem in
LQG. With its analogous constraint structure to full gravity, the U(1)*3 model may hold the key to enhanced quantization techniques.

Secondly, | will delve into the asymptotic symmetries of General Relativity in the Ashtekar-Barbero formulation. New parity conditions for the
Ashtekar-Barbero variables will be proposed, which do produce non-trivial supertranslation charges at spatial infinity. This development paves the
way for investigating the quantum characteristics of supertranslation charges within the context of LQG.

Zoom link https://pitp.zoom.us/j/995329865387?pwd=cnU0V npJbjU4T St4AM EEZzV ngxb2wvdz09
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® Foundational Aspect:
The U(1)? Model of Euclidean Quantum Gravity

® Applicational Aspect: .
Boundary Conditions for Ashtekar-Barbero Variables with Supertranslations at i°
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Phase space variables: g (x),m%?(x), {q,m}~ 6
® Dynamics along the time flow generated by Hamiltonian H.

® Useful to decompose time flow into components

:f S @-’ Shift

® Hamiltonian is combination of two generators

H= fd3x(NH+Na‘f+ BOM

, D/FFeomorphfsm constraint

# an f;: onian const

H,[N%] generates diffeos within spatial hypersurface X
H[N] generates transversal displacements of X

In quantum theory:
he corresponding operator to H [N | controls the dynamics.
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Introduction and Motivation

® Classical evolution is governed by the Hamiltonian constraint.

Dirac '58; Arnowitt, Deser, Misner ‘62

M, g)

Z,q)

\

ADM,; Isham & Kuchar '8s; Lee, Wald ‘go

{Ha[N®], Hy[MP]} = Hy[LzM?]
{H,[N*],H[M]} = H[LzM]
{H[N],H[M]} = H,[q**(NO,M — MO,N)]
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Introduction and Motivation

H[N]is a very complicated function of g,  both for Lorentzian and Euclidean gravity.

® It has a simpler form in Ashtekar-Barbero variables Sen, ‘82; AshickSECERESEERE

E{* : densitized spatial triad (i = 1,2,3) AL, - conjugate connection (i = 1,2,3)
spatial metric information extrinsic curvature information
3. N @ 2 N 7el a b S= : N A b Euclidean
H[‘V] = Ld z N [ ab — (ﬁ = SNEimn[‘a Ab ﬁijL‘Ej‘Ek "—__1* H[N] = J-dBXN FclleijkE]gEk Hamiltonian
J 3 = z
F constraint

® Since spacetime is itself dynamical, LQG aims to construct this Hamiltonian constraint operator
without relying on any fixed background spacetime. We need new ideas and techniques beyond those
of QFT in fixed, flat spacetime.

) . . ) Jacobson, Smolin, Rovelli, Gambini and later by Blencowe, Pullin,
® These were developed through early pioneering contributions  Bruegmann, Borissov, Ashtekar, Lewandowski, Loll and etc.
and Thiemann’s construction of the Euclidean constraint operator in his QSD papers.  Thiemann g8

Thiemann showed how to construct the Lorentzian operator from the Euclidean one and the Volume
operator. It is for this reason that we restrict attention to the Euclidean Hamiltonian constraint. ~ Thiemann 98
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Introduction and Motivation

Although the QSD construction of the Euclidean constraint operator is a great achievement, some open
problems remain:

1. Many ambiguities in final operator action.

2. Constraint commutator [ﬁ[N], ﬁ[M]] does not reproduce correct quantized structure functions.

Algebraic

Quantum Gravity
Thiemann,

Giesel ‘o7, ‘10 l

Spin Foam Models

Master Constraint

Programme
Thiemann ‘06

Thiemann, Dittrich ‘06

Rovelli, Perez, Dittrich, Freidel,
Vidotto, Many others

e
To improve the construction, working on simpler models sharing essential feature L? :
of GR can provide significant insight and primary directions for future progress.
1- Parametrized Field Theory Kuchar 89 Varadarajan ‘o7; Laddha, Varadarajan ‘08, ‘10, ‘11; Thiemann ‘10; Thiemann ‘22
2- Husain-Kuchar Model  Husain, Kuchar ‘g0 Laddha, Varadarajan 11

Tomlin, Varadarajan ‘13; Varadarajan ‘13, ‘19;
Handerson, Laddha, Tomlin ‘13 Structure

SB, Thiemann ‘21, ‘22; SB, Shojaie, Thiemann ‘21; functions
Long, Ma "21; Thiemann ‘22

3- Smolin’s U(1)3 model smolin o2

Pirsa: 23120041

Page 6/36

Toy Models




What is the U(1)3 model? s o

Constraints in Euclidean Gravity: Constraints in Smolin’s U(1)? Model:

Gi|A'] =2 f d3x A (aaEia + ;i,a;‘fg') Gi[At] =2 f d3x A'(0,ER)
) b

Hy[N%] = -2 fd3x N® (FipEl — ALG;) e | H [N%] = —Zfd3x N¢ (Fl,EP — ALo,EP)
>

3
H[N] = fd3xﬁ chbeijkEjaElg H[N] = dexN FébeijkE]FlE,?
> =
éb = Za[aAﬁ,] w Fcib = 2a[a 57]

Features:

» Gauge Group: U(1)?

» Hypersurface deformation algebra between Ham. and diff. constraints is the same as that of GR
» Itinvolves structure functions

» Constraints are at most linear in A
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Towards Quantization

QO Dirac quantization of this model has already been studied in great detail using Electric Shift method

Tomlin, Varadarajan 13
Varadarajan '13, ‘22
Ashtekar, Varadarajan ‘21

Main Idea:
Reason for the successfully implementation of the diffeomorphism constraint: intuition

Ho[N“] = [ d3x NO(FaEP — AL9,EP) = [ dx Ef (LAL)

Is there such an intuition for the Hamiltonian constraint? Electric Shift N* ~ NE/*
HIN] = [ d3x € Fap NP ER = [ d*x €33 Ef(LFJ:A;,)

O We aim at moving forward its quantization through reduced phase space approach.

Quantization
Full Phase Space | ——————

L RPSQ approach has the additional advantage
that it frees us from the steps to compute

1. Kernal of constraint operators

2. Dirac observables

Kinematical
Hilbert Space

D@

Constraints Constraints

RPSQ
Physical Physical
Phase Space Quantization Hilbert Space
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Reduced Phase Space Approach

Pin

Relational Formalism Rovelli gos; Dittrich ‘oz, ‘o5
T=rt Preduced

+ Take two gauge variant f, T and choose T as a clock

* Gauge invariant extension of f denoted by Ff 7 (7)
in relation to values T takes

* Frr(7): values of f when clock T takes values 7

Physical Hamiltonian:

J
gauge orbit

1. Solve the constraints for as many momenta as there are constraints;
C(q%Ppa) = 0> po + h(q% Pagaz0)) = 0
Take their conjugate variables as clocks; T = ¢°
Define gauge fixing conditions using the clocks; 6 =T —7 =0
Make sure that the gauge conditions are stable. To do this solve {C;[AT],G'} = O for AL.
Try to find a function h with this property (f is a function on the reduced phase space)

f = {Hcan! f}CI=GI=0,AI=A{, = {h, f}

~won R

. . Rovelli, Dittrich, Thiemann, Giesel, Husain, Kaminski,
Dne can add matter to the theory and use it as the clock variables. | cwandowski, Ashtekar, Marlof, Pullin, Gambini,

Singh, Hohn, .....
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Reduced Phase Space Approach

Used for solving C, Used for solving C,

SB, Thiemann ‘21

(A, E') description

Suppose (A}, EY) is divided to
Theorem: If the first class constrair

Physical
/ : ¥ degrees of
S ol a system have the following form freedom

Solved FOF uA é"—_ OA = CA(U,ZE,(]), = MI J(uama(I) YyaJ + NI A(uawaCI) VA &= h[(u,ﬂf, Qap) Contains

differential
where the “matrices” oap := {Ca,vB} and@e non-singular. operators

|
gl o v Then, the physical Hamiltonian is Gauge fixings e,
ocks
h: (AéhI)CAZO,GIZO o GA . :0, re/ated to CA
0 & =—wix) -7 =0
in which A{ is the solutions of T \(
Clocks

{A'Ca+A'Cr,G"} =0={A"Ca+ACr,G7) related to C;
Gi=a,E?, H, = FLEP — ALa,E?, H = Fl e EfEp ab = 20[a A}

® Using the theorem we investigated several gauge fixing conditions and obtained physical
Hamiltonians.

Thiemann in his recent work [Thiemann '22] introduced Exact quantization of the U(1)3 model and in
his work used the results of [s.B, Thiemann '21] to show that the exact quantization of this model
matches with the reduced phase space quantization.
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Covariant origin

SB, Thiemann ‘22

The U(1)3 model was introduced in the Hamiltonian formulation. Lagr‘angian?

The U(1)6 Theory [S.B, T.Thiemann; CQG; 2022]

1
§=2 f d*z FApo1y

~AB _ $2AB | 1 KL$'AB sAB _ 3A 5B A _ LJ1V1/2 LA
01y = X1y *gvers T XKL, Y15 = € il == det({ep})/* €7

@ No local d.o.f.
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Covariant origin

SB, Thiemann ‘22

The U(1)® model was introduced in the Hamiltonian formulation. Lagrangian?

Twisted Self-Dual Model [SB, T.Thiemann; CQG; 2022]

1 .
5= / dt iz FLL S5
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Covariant origin

SB, Thiemann ‘22

The U(1)® model was introduced in the Hamiltonian formulation. Lagrangian?

Twisted Self-Dual Model [SB, T.Thiemann; CQG; 2022]

/ dt d®x FL $4P

N —

WAB __ 3A ;B

0j _ i — 1 kl
oFJ—FJ—EejMF

Features:

© D.of: 2
@ Constraints: G; = V7§,
Ca = ng W?,
C = Fl, e;umy ]
This leads to the Hamiltonian formulation of the U(1)?, regardless of the
value of v #£ 0
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Summary

Loop Problem
Quantum of
Gravity Dynamics

Quantum
Gravity
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Summary

The U(1)3

model

Smolin ‘g2

Canonical
Approach

Reduced
Phase Space
Quantization

Dirac
Quantization

Electric Shift
Method

Tomlin, Varadarajan ‘13

Exact

Quantization

Thiemann ‘22
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Summary

The U(1)3
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Dirac
Quantization

Reduced Phase
Space and Physical
Hamiltonian

Electric Shift Quantization

Method

Tomlin, Varadarajan ‘13

Exact
Quantization

Step

Thiemann ‘22 Thiemann ‘22

SB, Thiemann ‘21

Covariant
Approach

Covariant Origin
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SB, Thiemann ‘22
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Charge Foam
Model

SB, Thiemann
(in progress)
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Current and Future Projects

¢ Charge Foam Model ( %%* Thomas Thiemann )

%

It is anticipated that the spin foam model resulting from our study may be comparatively easier to
manipulate from a technical standpoint compared to their non-Abelian counterparts. As such, it could
serve as an intriguing experimental facility for exploring the spin foam approach to loop quantum

gravity.

® Holonomy as Quantum Time Operator («gs YonggeMa)

One of the disadvantageous of RPSQ is that time is not quantized in this approach. The goal of this work
is to take advantageous of linearity of the Hamiltonian constraint operator in holonomy and try to

interprent holonomy as quantum time operator.

Page 18/36
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Boundary Conditions for Ashtekar-Barbero

Variables with Supertranslations at iY

An Exploration into the Applicational Aspect of LQG

Based on [gr-qc/2311.01595]
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{CIJT} ~ 0

® Dynamics along the time flow generated by Hamiltonian H.
Useful to decompose time flow into components

=(\)5i + (V) swire

® Hamiltonian is combination of two generators

® Phase space variables: g, (x), 1% (x),

H = [ d°x(N H + N®H,) + Boundary terms

Hamiltonian constraint Piffeomorphism constraint

N

H,[N%] generates diffeos within spatial hypersurface X
H[N] generates transversal displacements of X

In quantum theory:
the corresponding operator to [N | controls the dynamics.

Pirsa: 23120041

Introduction and Motivation

® Classical evolution is governed by the Hamiltonian constraint.

Dirac '58; Arnowitt, Deser, Misner ‘62

M, g)

Z,q)

ADM,; Isham & Kuchar '8s; Lee, Wald ‘go

Hypersurface deformation algebra:

{Ha[N], Hy[MP]} = H[£yM?]

{Ho[N], H[M]} = H[LgM]
{HIN],H[M]} = Ha(NabM — Md,N)]

Structure functions
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Introduction and Motivation

® Flat Spacetime

Symmetries: Poincare = Translation X Lorentz m

Charges: Time translation — Energy
Spatial translation - Momentum
Rotation — Angular Momentum

Bondi, van der Burg, Mentyner ‘62
Sachs ‘62

® Asymptotically Flat Spacetimes

Symmetries: BMS = Supertranslation X Superrotation
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® Flat Spacetime

Symmetries: Poincare = Translation X Lorentz

Charges: Time translation — Energy
Spatial translation - Momentum
Rotation — Angular Momentum

Bondi, van der Burg, Mentyner ‘62
Sachs ‘62

® Asymptotically Flat Spacetimes

Introduction and Motivation

=

Symmetries: BMS = Supertranslation X Superrotation

> First identified at Null infinity

» Can be identified at Spatial infinity?
Why is it important?

Pirsa: 23120041
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® Continuity of the boundary

® Quantum features of the charges
Which QG Theory ?
Canonical Loop Quantum Gravity

What is the language of LQG?
Ashtekar-Barbero variables

Introduction and Motivation

=

Goal:
To study the asymptotic structure of gravity in terms of

Ashtekar-Barbero variables at i° in the asymptotically flat context.

Why?
In order to better understand the role of the BMS group in the

guantum theory using LQG techniques.

Pirsa: 23120041
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Standard Boundary Conditions

Fall-off conditions in Cartesian Coordinate: [Thiemann; 95] m

= 2 Metric\in\ Cartesian Coordinate x': &),
Metric in Polar Coordinate x®: Vg,

® In Polar Coordinates: [sB; 23]

Asymptotic triads 1
E] =r2[ylpl[+ 7 Fiv? + 0(1) A§=r—2 2Ya +0(@™3)

— — = _ : 1 -~
Ef = r [7lf|+ VY Fivt +0(r™) Ay == Givi+ 00

N

Y272 = 7% = diag(1,748), a,b € {r,0, 0}, A, B € {8, p}

Yap is the unit metric on the sphere

Page 24/36

Pirsa: 23120041




Standard Boundary Conditions

® Fall-off conditions in Cartesian Coordinate: [Thiemann; 95] m

Metric\in\ Cartesian Coordinate x': &,
Metric in Polar Coordinate x®: Vg,

® In Polar Coordinates: [sB; 23]

Asymptotic triads . 1 -~
ET = 2 [7l7Tl+ r 7 EI7 + 0(1) A§f=r—2 L e e
. _ . 1.
B =r T+ JTRITE+ 007 4 =2 (Gg7d + 00 )

Divergent part of the symplectic form:

Q= [ d®x 5AL A SE] zs : |
= [ = [..dedy (5G] A SFT + 8GA A @FA + 8GT A 6FA 4 5GB A SFE) + Finite
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Standard Boundary Conditions

® Fall-off conditions in Cartesian Coordinate: [Thiemann; 95] m

Metric\in\ Cartesian” Coordinate x': &,
Metric in Polar Coordinate x®: Vg,

® In Polar Coordinates: [sB; 23]

Asymptotic triads _ 1
ET = r2[7[7l[+ r 7 FI78 + 0(1) Ar =5 GiVa +0()
= _ . 1.
Eff = Jyl{)+ T F7E + 0Gr™) Ay == Gavt + 0072
Divergent part of the symplectic form: Standard Parity Conditions

[Regge, Teitelboim; 74]
[Thiemann; 95] [Campiglia; 15]

Q= [ d®x 5AL ASEY = - |
= [ 2 [, dodg (6GT A 5FT +4 6GA A 6FA + 6GA A 6FA it 6GB n 6FA) + Finite
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Standard Boundary Conditions

%+ Consistency requirement:
The fall-off and parity conditions must be preserved under hypersurface deformations

¢ Yet another requirement
Generators of the asymptotic symmetries must be well-defined

1) They should be finite Temporal
2) They should be functionally differentiable = Supertranslation
. 9 . . N = 1b)+(fo -f-Sr-l— O(?“—l),
GiAY] = = / B2 Q)(9aE2 + eiju AL B}
A B :U@ s k) N" =(Wg)+ Sr +O(r™1),
-2 :
N = — / ddﬂf@ i — A;gi) NA—yALlpag O(r=2)
N r

/d’ LG

m a : | !
EzmnK Kb} EzjkE Ek A= =)\ i O(T—Q)
T
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Intuition

(61, 91)
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Intuition

Ordinary time translation: t > t + a
Conserved charge: Energy
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Standard Boundary Conditions

% Consistency requirement:
The fall-off and parity conditions must be preserved under hypersurface deformations

% Yet another requirement

Generators of the asymptotic symmetries must be well-defined
1) They should be finite

Tewmporal
2) They should be functionally differentiable

=7 Supertranslation
1=2 4 ~ N = i [ +G 06,
A =—/d“ (0 + e AL B |
g[ ] 3 $® €ijk k) N™ =Wk, _|‘Sh —1—0( 1)’ radial
s ) 5 S SUDEer-
N / dsx@ 5B — AiG:) WA =¥+ 11 o p

) translation
N] / ds @[ EzmnKmej| EzjkEaEk Al = —)\l + O(T’_ )
T

In [Thiemann; 95] [Campiglia; 15] the well-defined generators were derived and Poincare symmetry was recovered but
X

Pirsa: 23120041
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Standard Boundary Conditions

% Consistency requirement:
The fall-off and parity conditions must be preserved under hypersurface deformations

% Yet another requirement

Generators of the asymptotic symmetries must be well-defined
1) They should be finite

Tewmporal
2) They should be functionally differentiable

=7 Supertranslation

S . N = 4+ (fd+(57)+ o(+—Y),
AT = 2 / BrQ)(8, B + €, AT E ,
Gi[A'] 3 l'@ i T €ijkAg k) NT _WR+Cth+ O( —1)’ rRadial

N9 =25 [ 3 b i | § —> SE
— /d&?@ bEi _Aagi) N YA—{— IA+O(

) translation
N] / dd @[ FzmnK Kb} ELJkEaEA A = ;)\z + O(’I“_ )

In [Thiemann; 95] [Campiglia; 15] the well-defined generators were derived and Poincare symmetry was recovered but

St ~odd, Spg~ even Supertmnslation Charge: df? (}STF,( . SHG;;) =0 :.;@

S? T

Pirsa: 23120041
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The following boundary conditions are the desired ones

Ff ~ Fg ~ F(f = even
Ff ~F} ~F¢ ~ Gl = odd
(Fy - _A) (G§ +G7) ~ (GE + G7) = even

~0 r Ay _
GO + Z\F o(FT — ) = odd
FT FA —
G9+2f ( A) odd
G¥ — F Dy(Fr — F) = even
I A T —
GLP - iD()(F” F4) — even IABFr + FB 0

~  <7B
’YB[EOFD] :0
0 \/_ T _
G+ (F — F) = odd

G = (F: = F;;‘) = odd

1
27

New Boundary Conditions

[SB; 23]

N=rb+ fo+Sr+0(r~
N"=Wgr+ Sr+0O(r~

1
NA=Y44+ -1+ O(r
r

, 1_.
AT =N +O(r?)

?)

Page 32/36
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New Boundary Conditions

% The following boundary conditions are the desired ones [SB; 23]
= - - o b o AC
Ff ~ F‘g ~ Fgg = even ID = ()D” —-Bb g(“ :BDI"r ) - 77,1[_)73('1?7-
F? ~ F8 ~ PP ]G _ DA _ ~ - - o AB .
L _QA i _9 : _, _ 20" = —s —=Da (b (k5 +780kf]) — B {F,',‘(_DA{)) _9bDsFA +b %1B(ng}
(Fr - ) (&3 +Cn) ~ (G5 + @) £ even) v 7=

i - A b N i nAY
Gf 2\/_ F’I’ Fﬁl) — odd Ap + 3§DU(F,. — F4) = odd

- b —
Ay + dé[);(F,’. — F4) = even

Gg+2f D,(Fr — F4) = odd
éf—ﬁl}g(fﬂ F4) = even N:Tb+f0+ST+O(T—1)7
S o S asF + Fp =0 N" =Wg+ Sr +0(r™1),

6L, — TDg(F: — F4)) = even

7 5’B[E5FB =0 1
G+ Y (77 - FA) = odd - NA=YA+ 14 +0(2)
r
_ 1 S
Gy - 2\/_ (F Ff) = odd A’L - 15\@ s O(T_Q)
P
+* The transformations that preserve the standard boundary conditions are [SB; 23]
= — — 2 _
ST ~ even, SR ~ odd QSupertranslation = —2 fzdﬂ \/)_’ [%1_‘_ (F; - Fﬂ) _ E SRG;:
S N

evon W odd

Page 33/36
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New Boundary Conditions

% The charges associated with f,,, Wi and Sy, S are all finite and non-vanishing  [sB; 23]

< But it turns out that the charges associated with b and Y4 are not finite

% In terms of ADM variables, if one sets the leading term of the constraints equal to zero the
divergences associated with boost and rotation charge isremoved.  [Henneaux, Troessaert; 18]

% Surprisingly this method does not work in Ashtekar-Barbero formulation. [SB; 23] 7(s)

—_—

B
% By examining the process of obtaining Ashtekar-Barbero variables from ADM variables, it
becomes evident that in order to establish A, and E{* as conjugate variables, particularly to
demonstrate that the Poisson bracket between two A}, is zero, it is necessary to prove

0Th(z) Oy (y)

SEL(y)  O0E%(z)

which represents the integrability condition for F({ a to possess a generating function F.
v" For a manifold without boundary

v" For the asymptotically flat manifold with the standard parity conditions

The function F is not well-defined for the new boundary conditions.

f one wants to keep the connection with ADM formulation, boundary conditions should make F well-defined.
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Outlook

% Find appropriate parity conditions for Ashtekar-Barbero variables which produce the
full Poincare + Supertranslation charges at spatial infinity.

% Trying to figure out how to impose the boundary conditions in quantum level properly
and use LQG techniques to quantize the supertranslation charges.

% Once we have successfully accomplished the previous goal, our next aim is to
determine boundary conditions that not only yield supertranslations at spatial infinity,
but also incorporate superrotations
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Thank you for your attention!
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