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Spacetime wormholes

L

We define a spacetime wormhole as a geometry (real or complex)

with boundaries that have two or more disconnected components

Most constructions considered have been in Euclidean signature

Ubiquitous in string theory

Supported by "bouncing" energy in FLRW: ds? = d72 + a?(7)dX?

(e.g., negative kinetic energy, gradient energy, negative boundary

curvature)

A renewed importance:

» Replica wormholes producing the Page curve [Almheiri et. al. '20]

[Penington et. al. '19] (though these are distinct from spacetime
wormholes)
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Spacetime wormholes

L

We define a spacetime wormhole as a geometry (real or complex)

with boundaries that have two or more disconnected components

Most constructions considered have been in Euclidean signature

Ubiquitous in string theory

Supported by "bouncing" energy in FLRW: ds? = d72 + a%(7)dX?

(e.g., negative kinetic energy, gradient energy, negative boundary

curvature)

A renewed importance:

» Replica wormholes producing the Page curve [Almheiri et. al. '20]

[Penington et. al. '19] (though these are distinct from spacetime
wormholes)

= Replica wormholes relate to physical wormholes [Penington et. al. '19]
[Marolf, Maxfield "20]
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Factorization problem

= Wormbholes are thus an important part of the quantum gravity story

= But including them in the gravitational path integral (GPI), i.e.,

L

Zgrav :[Dgp¢e—55[g,¢] (1)

leads to the "factorization puzzle"

(2){(Z)

= The gravitational theory seems to be dual to an ensemble of CFTs,
contradicting our established intuition of UV-complete bulk gravity
theories [Maldacena '97], etc.
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Potential resolutions to the factorization problem

Ensembles are right (loophole for limits on SUSY CFTs in high-dim?
[Seiberg '10]) b

Precise cancellations of wormholes in UV-complete theories, like in
SYK [Saad et. al. '21]

Euclidean wormholes unstable due to brane nucleation (e.g.
wormholes with negative-curvature boundaries [Witten, Yau '99], or
Euclidean wormholes from 10- and 11-dim SUGRA [Marolf, Santos '21])

Euclidean wormholes unstable due to field-theoretic negative modes

Our perspective: we should really consider Lorentzian
wormholes - whose contribution could could be forbidden due to
brane nucleation or negative modes, or for some other reason
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Why Lorentzian?

= More fundamental description \

= Avoids the conformal factor problem in Euclidean signature

= Qver real contours, the Euclidean action is unbounded below
= Can avoid this by choosing a complex contour, but in many cases

there is no "natural" choice for this contour

= For the axion wormhole, extra subtlety in Euclidean due to the sign
of the kinetic term

However still some subtleties in Lorentzian signature, especially with the
domain of integration = we will include geometries with mild
singularities (codimension-2 conical signularities)
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Axion wormholes: definition

Originally formulated in Euclidean signature, where the kinetic term has
the "wrong" sign [Giddings, Strominger '88]

1

Sg=1— 167G /M \/E(R — N+ 6“)(6‘“‘)() + Sbkndy. (2)

The solution is an FLRW metric

ds® = dr® + a*(r)dQ5_,;

where a(r) depends on A and the conserved axion flux
Gh= fr:constant dQ\/E@,X
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Axion wormholes: previous studies

Its stability under negative modes has been studied, but with conflicting
results:

= Hertog et. al. '19

= Euclidean analysis

= Asymptotically AdS

= Neumann boundary conditions for the axion

= Unstable: infinitely many negative modes

» Unstable perhaps due to the choice of boundary conditions? [Andade,
Marolf '11]

= Loges et. al. '22:
» Lorentzian analysis, but does not address factorization problem -
studies transition amplitudes

Asymptotically flat
Stable: no negative modes
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Our research question

We would like to study the axion wormhole contribution to the
Lorentzian path integral, i.e. y

= Given boundary conditions on two disconnected spacetime
boundaries, does there exist a connected solution to (most of) the
equations of motion?

= |f not, can the fields in the theory be analytically continued to make
one?

To study this in a way that addresses the factorization problem, we first
need to introduce the approach of [Marolf '22] for constructing Lorentzian

partition functions
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Gravitational Thermodynamics of the Lorentzian GPI

We define the partition function

Z(B) = Tre PH = /deg(T)ZL(T) (4)
L3
In AdS/CFT, Z(T) = Tre 7.
Just as Zg(3) is defined with boundaries S* x Y where S* has proper
length 8, Z, () is defined with boundaries S* x Y where T is the proper
time around S'. In practice, this means...

= Start with a boundary OM = Y X R and a killing vector £5 which
generates time translations along R

= Quotient the boundary by the isometry e¢?” — get boundary
Y x S! with T the proper time around S?!

Z;(T) is a GPI (integral over e) for geometries with these boundary
conditions.
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The Lorentzian GPIl: AdS-Schwarzschild example

For example, we take the AdS-Schwarzschild black hole

= £5 can be extended into the bulk but has a non-trivial killing horizon

= —> when we periodically identify, get a codimension-2 conical
singularity:
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The Lorentzian GPI

For AdS-Schwarzschild and similar geometries

Z(8) = / dAdTf5(T)e”, with 5:—fA[»y]/4c; —ET (5

Some comments:

The integrand is not pure phase, but that is okay
To get convergence, we first perform the integral over T
E¢ is also a function of A

This gives the usual results in simple cases, e.g. Euclidean BHs are
saddles (this is only possible because we included metrics with
conical singularities)
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Boundary conditions for Lorentzian axion wormholes

We now apply this same analysis to the Lorentzian axion wormhole in
AAdS, A <O0.

= In Euclidean signature

ds®> = dr* + a°(r)dQ3_, (6)

and Wick rotating to Lorentzian
ds® = dr* + a°(r)dX3_, . (7)

where d¥ 2 is the static patch de Sitter line element. Eventually
we'll take a quotient.
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Boundary conditions for Lorentzian axion wormholes

We now apply this same analysis to the Lorentzian axion wormhole in
AAdS, A <0.

= In Euclidean signature
ds®> = dr* + a*(r)dQ3_,
and Wick rotating to Lorentzian
ds’ = dr + a*(r)dz5_,; .

where d¥? is the static patch de Sitter line element. Eventually
we'll take a quotient.

We'll also take (real) Dirichlet boundary conditions for the axion on
the two boundaries

1
— —_— — — “
S 16mC /Jw v/ g(R AN—9,x0 X) + Sbndy. (8)
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Boundary conditions for Lorentzian axion wormholes

We now apply this same analysis to the Lorentzian axion wormhole in
AAdS, A <O0.

= In Euclidean signature
ds®> = dr* + a*(r)dQ3_, (6)
and Wick rotating to Lorentzian
ds® = dr* + a*(r)dZ5_, . (7)

where d¥ 2 is the static patch de Sitter line element. Eventually
we'll take a quotient.

We'll also take (real) Dirichlet boundary conditions for the axion on
the two boundaries

L

f \/_ R—N\— Bﬂxa“ )+5bndy (8)

Note that the kinetic term has the correct sign! Looks like an
ordinary scalar field...

167G
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Equations of motion for Lorentzian axion wormholes

= Since the axion is constant on the boundaries, we set
x(r,x") = x(r). The constant flux is

q= / ko) = 0axn. O

relating x and the scale factor. '

= The rr-component of Einstein's equations gives

q° 2a°A
(d —1)(d —2)a2@-2)  (d —1)(d —2)

(8,a(r))* =1+

(10)

= —> with A <0, d,a(r) never vanishes. What does this mean?

Page 18/62



Pirsa: 23120038

No fixed-area Lorentzian axion wormholes

= No positive minimal value of a(r)

= Not really a two boundary solution (no "bounce") but two
disconnected one-boundary solutions with a singularity in the deep
bulk

Ed—l Zd—l

= Curvature grows polynomially in a—! approaching the singularity
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Imaginary values for the axion?

» We could consider imaginary boundary conditions for the axion, then

q® changes sign and k

2 q 2a°A
(02(0) =1- (-G —2ya@s ~ @-1)a—z Y

does give a wormhole solution.

Perhaps, via analytic continuation, this tells us something about
dual CFT correlators for real Ay

But, the wormhole is traversable =—> non-zero commutators

between the two boundaries, which does not match the CFT
calculation
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Fixed-Length Wormholes
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Revisiting Loges et. al.

= Two boundary transition amplitude in
axion gravity, with a Lorentzian GPI,
Dirichlet boundary conditions for the
metric, and Neumann boundary
conditions for the axion
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Fixed-Length Wormholes
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Revisiting Loges et. al.

Two boundary transition amplitude in
axion gravity, with a Lorentzian GPI,
Dirichlet boundary conditions for the
metric, and Neumann boundary
conditions for the axion

Explore fixed-"length" saddles,
integrating over the lapse N

Find family of bang/crunch
cosmologies with imaginary saddle
point

These aren't relevant to our calculation
(results depend on our particular
choice of calculation!), but we could
use the idea of fixed-length saddles...
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A new equation of motion

To vary over the wormhole length we must go off-shell:
k

2 q° 2a%A -
i (1 T - D)([d-2202 ~ (d_1)(d— 2)) =£ 12

-

Ve

potential V/(a)

v
wor
st \

-15F

b 22l

Imposing the same boundary conditions as before, we find the scale
factor.
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Computing the action

Using this scale factor solution, we can solve for the action

S =—iA}]/4G — E: T

= FE¢ is the ADM energy of the boundary KVF &
= What is 7

On each boundary we have:

The conical defect is a
codimension-2 surface con-

necting the boundaries:
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Contour analysis

k
= Once we have the action, we plug into the GPI

Z(B) = / dLdAdTfs(T)e?/*CeEeT

and perform the T integral, setting T = —if.

= We then perform a saddle point and contour analysis for the
remaining integral. By Morse theory:

= i

So we look for complex saddles for which the steepest ascent
contour intersects the contour over reals
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Preliminary results

r

®
=

(T
g X

[X]

~
&}

| \
3\astL)) = atiqd))

AR

= |n 2 + 1-dim, our results so far suggest that these fixed-length
wormholes are irrelevant
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Preliminary results
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= |n 24 1-dim, our results so far suggest that these fixed-length
wormholes are irrelevant

= Different results from [Loges et. al. '22], reinforces the point that the
relevance of the axion wormhole is inextricably linked to the
particular quantity we are computing
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Conclusion & Future Directions
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Future work

= Understanding what parts of our
analysis here can be applied to other
Euclidean wormholes supported by
gradients, like those in [Marolf, Santos

'21][Chandra, Hartman '22][Stanford '20].
The argument against allowing
imaginary Ay doesn't seem to hold for

wormholes supported by gradients

Extending our fixed-length wormhole
results beyond 2 4+ 1-dimensions

Applying [Marolf '22] to other contexts
where a Lorentzian approach would be
enlightening, e.g. [Chua, Hartman '23]
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Summary

The main moral: the relevance of the axion wormhole is highly
dependent on the exact question we are asking

In the fixed-area calculation, we found there are no Lorentzian axion
wormholes with real BC's for

We argued against considering axion wormholes with imaginary BC's
for x

We considered "off-shell" fixed-length wormholes, with preliminary
results suggesting that these do not contribute to the GPI (in
2 4+ 1-dim)

Thank you!
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Spacetime wormholes

L

We define a spacetime wormhole as a geometry (real or complex)

with boundaries that have two or more disconnected components

Most constructions considered have been in Euclidean signature

Ubiquitous in string theory

Supported by "bouncing" energy in FLRW: ds? = d72 + a%(7)dX?

(e.g., negative kinetic energy, gradient energy, negative boundary

curvature)

A renewed importance:

= Replica wormholes producing the Page curve [Almheiri et. al. '20]

[Penington et. al. '19] (though these are distinct from spacetime
wormholes)

= Replica wormholes relate to physical wormholes [Penington et. al. '19]
[Marolf, Maxfield "20]

Pirsa: 23120038 Page 35/62



Pirsa: 23120038

Factorization problem

= Wormbholes are thus an important part of the quantum gravity story

= But including them in the gravitational path integral (GPI), i.e.,

L

Zgrav :[Dgp¢e—55[g,¢] (1)

leads to the "factorization puzzle"

(2){(Z)

= The gravitational theory seems to be dual to an ensemble of CFTs,
contradicting our established intuition of UV-complete bulk gravity
theories [Maldacena '97], etc.
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Potential resolutions to the factorization problem

Ensembles are right (loophole for limits on SUSY CFTs in high-dim?
[Seiberg '10]) b

Precise cancellations of wormholes in UV-complete theories, like in
SYK [Saad et. al. '21]

Euclidean wormholes unstable due to brane nucleation (e.g.
wormholes with negative-curvature boundaries [Witten, Yau '99], or
Euclidean wormholes from 10- and 11-dim SUGRA [Marolf, Santos '21])

Euclidean wormholes unstable due to field-theoretic negative modes

Our perspective: we should really consider Lorentzian
wormholes - whose contribution could could be forbidden due to
brane nucleation or negative modes, or for some other reason
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Why Lorentzian?

= More fundamental description \

= Avoids the conformal factor problem in Euclidean signature

= Qver real contours, the Euclidean action is unbounded below
= Can avoid this by choosing a complex contour, but in many cases

there is no "natural" choice for this contour

= For the axion wormhole, extra subtlety in Euclidean due to the sign
of the kinetic term

However still some subtleties in Lorentzian signature, especially with the
domain of integration = we will include geometries with mild
singularities (codimension-2 conical signularities)
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Axion wormholes: definition

Originally formulated in Euclidean signature, where the kinetic term has
the "wrong" sign [Giddings, Strominger '88]

1

Sg=1— 167G /M \/E(R — N+ 6“)(6‘“‘)() + Sbkndy. (2)

The solution is an FLRW metric

ds® = dr® + a*(r)dQ5_;

where a(r) depends on A and the conserved axion flux
= fr:constant dQ\/Ea’X
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Axion wormholes: previous studies

Its stability under negative modes has been studied, but with conflicting
results:

= Hertog et. al. '19

= Euclidean analysis

= Asymptotically AdS

= Neumann boundary conditions for the axion

= Unstable: infinitely many negative modes

» Unstable perhaps due to the choice of boundary conditions? [Andade,
Marolf '11]

= Loges et. al. '22:
» Lorentzian analysis, but does not address factorization problem -
studies transition amplitudes

Asymptotically flat
Stable: no negative modes
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Our research question

We would like to study the axion wormhole contribution to the
Lorentzian path integral, i.e. y

= Given boundary conditions on two disconnected spacetime
boundaries, does there exist a connected solution to (most of) the
equations of motion?

= |f not, can the fields in the theory be analytically continued to make
one?

To study this in a way that addresses the factorization problem, we first
need to introduce the approach of [Marolf '22] for constructing Lorentzian

partition functions
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Gravitational Thermodynamics of the Lorentzian GPI

We define the partition function

Z(B) = Tre PH = /deg(T)ZL(T) (4)
L3
In AdS/CFT, Z;(T) = Tre—™HT.
Just as Zg(3) is defined with boundaries S* x Y where S! has proper
length 3, Z, () is defined with boundaries S* x Y where T is the proper
time around S'. In practice, this means...

= Start with a boundary OM = Y x R and a killing vector £5 which
generates time translations along R

= Quotient the boundary by the isometry ef?” —> get boundary
Y x S! with T the proper time around S?!
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Gravitational Thermodynamics of the Lorentzian GPI

We define the partition function

Z(B) = Tre PH = /deg(T)ZL(T) (4)
L3
In AdS/CFT, Z(T) = Tre 7.
Just as Zg () is defined with boundaries S* x Y where S! has proper
length 8, Z; () is defined with boundaries S* x Y where T is the proper
time around S'. In practice, this means...

= Start with a boundary OM = Y x R and a killing vector £5 which
generates time translations along R

= Quotient the boundary by the isometry e¢?” — get boundary
Y x S! with T the proper time around S?!

Z;(T) is a GPI (integral over e) for geometries with these boundary
conditions.
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The Lorentzian GPIl: AdS-Schwarzschild example

For example, we take the AdS-Schwarzschild black hole

= £5 can be extended into the bulk but has a non-trivial killing horizon

= —> when we periodically identify, get a codimension-2 conical
singularity:
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The Lorentzian GPI

For AdS-Schwarzschild and similar geometries

Z(B) = /dAdeﬁ(T)e’S, with S = —iA[v]/4G — E: T (5)
[\
Some comments:
The integrand is not pure phase, but that is okay

To get convergence, we first perform the integral over T

E¢ is also a function of A

This gives the usual results in simple cases, e.g. Euclidean BHs are
saddles (this is only possible because we included metrics with
conical singularities)
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Fixed-Area Calculation
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Boundary conditions for Lorentzian axion wormholes

We now apply this same analysis to the Lorentzian axion wormhole in
AAdS, A <0.

= In Euclidean signature
ds® = dr* + a*(r)dQ5_; (6)
and Wick rotating to Lorentzian
ds® = dr® + a°(r)dX5_, . (7)

where d¥ 2 is the static patch de Sitter line element. Eventually
we'll take a quotient.

We'll also take (real) Dirichlet boundary conditions for the axion on
the two boundaries

L

f \/_ R—N\— Bﬂxa“ )+5bndy (8)

Note that the kinetic term has the correct sign! Looks like an
ordinary scalar field...

167G
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Equations of motion for Lorentzian axion wormholes

= Since the axion is constant on the boundaries, we set
x(r,x") = x(r). The constant flux is

= / 4L/ hd,x(r) = a®1(F)Bu(r).
r=constant

relating x and the scale factor. )

= The rr-component of Einstein’s equations gives

q° 2a

(8ra(r))* =1+

(d — 1)(d — 2)a2d-2) ~ (d —1)(d —2)

(9)

(10)
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Equations of motion for Lorentzian axion wormholes

= Since the axion is constant on the boundaries, we set
x(r,x") = x(r). The constant flux is

q= / _d*xhox(n = 0axn. O

relating x and the scale factor. '

= The rr-component of Einstein's equations gives

q° 2a°A
(d —1)(d —2)a2d-2)  (d —1)(d —2)

(8ra(r))* =1+

(10)

= —> with A <0, d,a(r) never vanishes. What does this mean?
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No fixed-area Lorentzian axion wormholes

= No positive minimal value of a(r)

= Not really a two boundary solution (no "bounce") but two
disconnected one-boundary solutions with a singularity in the deep
bulk

Ed—l Zd—l

= Curvature grows polynomially in a—! approaching the singularity
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Imaginary values for the axion?

» We could consider imaginary boundary conditions for the axion, then

g° changes sign and
x

q° B 23N (1)
(d —1)(d —2)a2d-2)  (d —1)(d —2)
does give a wormhole solution.
Perhaps, via analytic continuation, this tells us something about
dual CFT correlators for real Ay

(8,a(r))* =1-—

But, the wormhole is traversable — non-zero commutators
between the two boundaries, which does not match the CFT
calculation

Another oddity: action does not change under continuation, but no
classical solution
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Fixed-Length Wormholes
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Revisiting Loges et. al.

= Two boundary transition amplitude in
axion gravity, with a Lorentzian GPI,
Dirichlet boundary conditions for the
metric, and Neumann boundary
conditions for the axion
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Fixed-Length Wormholes
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Revisiting Loges et. al.

Two boundary transition amplitude in
axion gravity, with a Lorentzian GPI,
Dirichlet boundary conditions for the
metric, and Neumann boundary
conditions for the axion

Explore fixed-"length" saddles,
integrating over the lapse N

Find family of bang/crunch
cosmologies with imaginary saddle
point

These aren't relevant to our calculation
(results depend on our particular
choice of calculation!), but we could
use the idea of fixed-length saddles...
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A new equation of motion

To vary over the wormhole length we must go off-shell:
k

2 q° 2a%A -
s (1 T @d-D)([d-2702 ~ (d-1)(d— 2)) =£ (12

-

Ve

potential V/(a)

v
wor
st \

-15F

b 22l

Imposing the same boundary conditions as before, we find the scale
factor.
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Computing the action

Using this scale factor solution, we can solve for the action

S =—iA[]/4G — E: T

= E¢ is the ADM energy of the boundary KVF &
= What is 7

On each boundary we have:

The conical defect is a
codimension-2 surface con-

necting the boundaries:
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Contour analysis

k
= Once we have the action, we plug into the GPI

Z(B) = / dLdAdTfs(T)e?/*CeEeT

and perform the T integral, setting T = —if.

= We then perform a saddle point and contour analysis for the
remaining integral. By Morse theory:

=

So we look for complex saddles for which the steepest ascent
contour intersects the contour over reals
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Preliminary results
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= |n 24 1-dim, our results so far suggest that these fixed-length
wormholes are irrelevant

= Different results from [Loges et. al. '22], reinforces the point that the
relevance of the axion wormhole is inextricably linked to the
particular quantity we are computing
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Conclusion & Future Directions
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Future work

= Understanding what parts of our
analysis here can be applied to other
Euclidean wormholes supported by
gradients, like those in [Marolf, Santos

'21][Chandra, Hartman '22][Stanford '20].
The argument against allowing
imaginary Ay doesn't seem to hold for

wormholes supported by gradients

Extending our fixed-length wormhole
results beyond 2 4+ 1-dimensions

Applying [Marolf '22] to other contexts
where a Lorentzian approach would be
enlightening, e.g. [Chua, Hartman '23]
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Summary

The main moral: the relevance of the axion wormhole is highly
dependent on the exact question we are asking

In the fixed-area calculation, we found there are no Lorentzian axion
wormholes with real BC's for y

We argued against considering axion wormholes with imaginary BC's
for x

We considered "off-shell" fixed-length wormholes, with preliminary
results suggesting that these do not contribute to the GPI (in
2 4+ 1-dim)

Thank you!
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