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Abstract: According to the Belinski-Khalatnikov-Lifshitz conjecture, the Bianchi I X spacetime describes the evolution of each spatial point close to
a generic spacelike singularity. However, near the singularity, quantum effects are expected to be relevant. Therefore, in this work a quantum
analysis of the model is performed, mainly focusing on its chaotic nature. Considering some minimal approximations, it is possible to encode all the
information of the quantum degrees of freedom in certain canonical variables, expanding thus the classical phase space. In this way, we can apply
the usual methods of dynamical systems for studying chaos. In particular, two techniques are considered. On the one hand, an analytical study is
carried out, which provides an isomorphism between the quantum dynamics of Bianchi I1X and the geodesic flow on a Riemannian manifold. On the
other hand, by means of numerical simulations, the fractal dimension of the boundary between points with different outcome in the space of initial
data is studied. The main conclusion is that, although the quantum system is chaotic, the quantum effects considerably reduce this behavior as
compared to its classical counterpart.
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Classical model: Mixmaster

In terms of the Euler angles (6, ¢, )

siny d6 — cos P sin 6 do,
cos P dB + sin 1 sin 6 d¢,

Metric |

Lapse function [-forms on the
Scale factors '
‘ 3-sphere

Spatially homogenous and anisotropic 1
vacuum Bianchi IX spacetime
Solution of the vacuum Einstein field equations J)

Spacelike singularity at t = 0, where a; — 0

Describe the evolution of each spatial point close to a generic spacelike singularity (BKL conjecture)
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Classical model: Mixmaster

* Follow the ADM formalism

Misner .
: ' = 3 L=
variables ! (a,a,a)/3|” P~

Spatial volume

Singularity « - —o0

Hamiltonian L |
. . C=5e%(—ps+pitp)+e“V(B,p)=0
constraint § 2

Potential

Do P4, P— conjugate momenta: {a, p,} = {f4,p+} = {P_,p_}=1
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Classical model: Mixmaster

The dynamics?
* Freedom to choose any time parametrization (General Relativity)
* Choose an internal variable as the time variable

* @ is a monotonic function: choose it, gauge @ =t

Hamiltonian
constraint

Solve it for p,, Physical

Hamiltonian
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Classical model: Mixmaster

Physical Hamiltonian

—pa = [p3 + P2 + 2e*V(By, f)]IV? |

Equations !
of motion !

Qualitative dynamics close to the singularity (¢ » —) !

|

Analyze the potential V(B,, B-)
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Classical model: Mixmaster

Equipotential lines

* V(B B-) is negligible:

. | - Free
H =[pi +p2 +2e* V(B fOIV? =~ (pf +p2)V/? _
dynamics

* V(B;,P-) is not negligible:

Infinite potential walls

+ Along the 3 symmetry semiaxes, no potential wall is

encountered: 3 exits
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Classical model: Mixmaster

Analogy

The system is a point
B . . . +
ounee particle with coordinates
(B4, f-) moving in a

potential well with 3 exits

~ similar to the billiard picture

+ H = [pi +pZ +2e* 9V (B, p)]H?

Potential walls move

away das @ — —0o
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Classical model: Mixmaster

Bounces

Specific transition laws
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Classical model: Mixmaster

Constantly

bouncing

against the
potential walls

(billiard)

Final state
a — +co

(most points)
“ ”
escape
throu gh one

of the 3 exits
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Classical model: Mixmaster

Chaotic motion

Houw to prove this?
Nature of general relativity: observer independent methods Usual dynamviedl techniques

1. Fractal methods:

N.J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Farey Tale, Phys. Rev. D 55, 7489 (1997)

2. Lyvapunov exponent:

G. P. Imponente and G. Montani, On the Covariance of the Mixmaster Chaoticity, Phys. Rev. D 63, 103501 (2001)
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Classical model: Mixmaster

1. Fractal methods: N. J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Favey Tale, Phys. Rev. D 55, 7489 (1997)
Main ideas:
* Systems with more than one attractor (repeller), exit or final outcome

* Divide the space of initial conditions accordingly, in terms of the attractor/exit they end up (basins of attraction)

* £ = radius of the uncertainty in the initial conditions
Attractor 1 Attractor 2

* f (&) = fraction of the space of initial conditions with

uncertain outcomes for each &

» [Uncertain ouctome: Attractor 1 or Attractor 2/
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Classical model: Mixmaster

1. Fractal methods: N. J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Farey Tale, Phys. Rev. D 55, 7489 (1997)
Main ideas:
* Systems with more than one attractor (repeller), exit or final outcome

* Divide the space of initial conditions accordingly, in terms of the attractor/exit they end up (basins of attraction)

* £ = radius of the uncertainty in the initial conditions
Attractor 1 Attractor 2
* f (&) = fraction of the space of initial conditions with

uncertain outcomes for each &

* Not chaotic: no amplification of the initial error

fe) e
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Classical model: Mixmaster

1. Fractal IlletllOdS: N. J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Favey Tale, Phys. Rev. D 55, 7489 (1997)
Main ideas:
* Systems with more than one attractor (repeller), exit or final outcome

* Divide the space of initial conditions accordingly, in terms of the attractor/exit they end up (basins of attraction)

* £ = radius of the uncertainty in the initial conditions
Attractor 1 Attractor 2
* f (&) = fraction of the space of initial conditions with

uncertain outcomes for each &

* Not chaotic: no amplification of the initial error
fle) xe

*  Chaotic: amplification of the initial error

fle)xed (0<
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Classical model: Mixmaster

1. Fractal methods: N. J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Favey Tale, Phys. Rev. D 55, 7489 (1997)

~ =1, smooth boundary

(Uncertainty exponent) § = D — Dy, <

.

Dimension of the space of

initial conditions . .
Dimension of the boundary

* Not chaotic: no amplification of the initial error

fle) xe

* Chaotic: amplification of the initial error

fle)xed (0<86<1)
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Classical model: Mixmaster

1. Fractal methods: N. J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Favey Tale, Phys. Rev. D 55, 7489 (1997)

~ =1, smooth boundary
(Uncertainty exponent) § = D — D), <

’-\ < 1, fractal boundary (D) not an intecer)
Dimension of the space of
initial conditions : :
- Dimension of the boundary

* Not chaotic: no amplification of the initial error
fle) xe
[ ]

Chaotic: amplification of the initial error

fle)xed (0<865<1)
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Classical model: Mixmaster

1. Fractal methods: N. J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Farey Tale, Phys. Rev. D 55, 7489 (1997)

~ =1, smooth boundary

(Uncertainty exponent) § = D — D, <

‘ < 1, fractal boundary (D), not an intecer)
Dimension of the space of

initial conditions . .
iy Dimension of the boundary

Quantify the

Compute § =—p
level of chaos .

* Not chaotic: no amplification of the initial error

f(e) e Smooth boundary

* Chaotic: amplification of the initial error

feyxe® (0<s<1) Fractal boundary
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Classical model: Mixmaster

1. Fractal methOdS: N. J. Cornish and J. J. Levin, The Mixmaster universe: A Chaotic Favey Tale, Phys. Rev. D 55, 7489 (1997)

- I“Illl
1%00 ' ||

m ‘“lll ilili !

| !i“' ml 'i E ®Fdt]  ®Fuit?
: i '

!_‘ _

li _
I llll !l ii\ii “ Hd Chaos

structure
l
|
lillilu i

1.345

!!i!!!!!' Quantity it: § = 0.14

Pirsa: 23120035 Page 20/40



Classical model: Mixmaster

Lyapunov exponent:
G. P. Imponente and G. Montani, On the Covariance of the Mixmaster Chaoticity, Phys. Rev. D 63, 103501 (2001)
Main ideas:
* The value of the Lyapunov exponent is not invariant: depends on the time parametrization
*  The sign of the Lyapunov exponent is invariant: A > 0 — chaotic

*  The Lyapunov exponent is an accurate way of representing chaos «— some specitfic conditions are satisfied

With the usual variables to describe the Mixmaster model they are not satisfied

Change of variables
Misner-Chitre variables:

Pirsa: 23120035 Page 21/40



Classical model: Mixmaster

2. Lyapunov exponent:

G. P. Imponente and G. Montani, On the Covariance of the Mixmaster Chaoticity, Phys. Rev. D 63, 103501 (2001)

* Each trajectory on the phase space is isomorphic to a geodesic on a Riemannian
manifold with metric: dé Necessary conditions

dSZ = E2 {2—_1 + (52 - 1)&192 to compute the

Lyapunov exponent
Chaotic geodesic tlow The Mixmaster model is chaotic

¢ The geodesic deviation equation shows that initially close geodesics exponentially

diverge — Lyapunov exponent A > 0 —— The system is chaotic
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Complete picture?

Quantum effects?
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Quantum model: formalism

Canonical quantization: f; — ﬁi, P+ = P+, [[?m,ﬁn] = (hd,,, (mne{+-}

'y P . : A I .
Instead of solving the Schrédinger equation Hy/(By, a) = ih—y (B, a), we will study how

the quantum moments ot the wave function evolve, based on this equivalence:

Wave function P (f4, a)
Information

Of the : equivalent

quantum ke

cae {A(ﬂz’*pzﬁﬁ’pb = ((3+—£+)m(p"+—m)“(ﬁ_—ﬂ_)k(ﬁ_—p_)‘)}

Infinite set of quantum moments
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Quantum model: formalism

Motivation?

Moment generating tunction

— fesx P(x) dx (( xn) :an(S) )
E =0

equivalent

* Probability distribution P (x)

ds™

Information of the {A(xlpj) = (& — )\ — p);)wew}l |
quantum state equivalent L,)=0 Totally
symmetric
ordering
Dimensions Central and completely
[AGeiph)] =[h) G2 symmetric quantum moments
x'pl)| =

i +j = order e.q. Var(x) = A(x?)
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Quantum model: formalism

The dynamics of the quantum moments? Governed by the following Hamiltonian:

Hamiltonian operator

1 am-l—n+k+lH(ﬁ+’p+’ﬁ_, p_, a,)
minlk!l! opMoplopkapt

ABT D} B

dA(BT'PYBEPL) |

-—

Completely equivalent to the evolution given by the Schrodinger equation
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Quantum model: formalism

Remanrks:
It can be applied to any quantum system (Bojowald, Skirzewski (2006)]
* Known for a very long time: thanks to computers “rediscovered” in the last ~15 years
* Usually Hy cannot be written in a closed-form (infinite series)

* Particular exception: polynomial Hamiltonians

* Practical purposes: apply a cut-off

N L

1 0" H(x,p,t) "
A - — 2 i - Jl
p,t)) o 2 iljl dx'dp/ Ax'PY)

itj=2

~ Semiclassical study
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Quantum model: formalism

Advantages:
* Deal directly with measurable quantities (expectation values) instead of with the
wave function
Clearer to interpret: work in the phase space directly
Closer to the classical description: classical e.o.m. + quantum corrections
* Immediate to obtain the classical limit
* Very appropriate for semiclassical studies
No need to define the Hilbert space: “assume” that there is an internal product

Equations with total derivatives instead of partial (Schrodinger)
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Quantum model: set-up

Our particular model: Mixmaster Y o
o cannot be written in a closed-form

ai+j+k+lH(5+; P fop_, )

— — A(BLpLBEpL)
iR gpiap) apkapl o

i+j+k+1=2

How to deal with this?
*  Apply a cutoff: D. Brizuela and S. F. Uria (2022)

» Consider other approximations: M. Bojowald, D. Brizuela, P. Calizaya Cabrera, and S. F. Uria (2023)
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Quantum model: set-up

Consider two assumptions: (Semiclassical)

Ho= () ~ [{?) G ~ (2P oo @) = (52 + 2 4 26V (G )

1 "™V (B,, o)
ij! aplop’

= p2 +p? + A(p2) + A(p?) + 2e*¢ Z A(BLBY)

i+j=2

Gaussian-like state all along the evolution:

2n 2m
: sitss™(2n)! (2m)! _ }
/ A(pzr 2™ = ST aTE—— A(BRF™) = 0 otherwise (n,m€N, s;,5, €R")

+ oo

Z 1 a7V(B,, B

SV opLap!

L 1 52 2 2 ap 2, 0.2
)A([ﬁr[)’l) = 6[3"85”3231 + 2e4F+ 85 (ez'“ﬂ cosh(4v3p_) — 1) — e PPt asiHoss cosh(Z\/L-%B_)]
L Y )
Quantum potential Vo (S, f_, 51, S3)
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Quantum model: set-up

1/2 Closed-form
] effective

HQ =~ [p-% + pE + A(p-%) + A(pE) + 284& VQ(ﬁ+J ﬁ_;Sl;SZ)

Hamiltonian

Some variables are not canonically conjugate I

l

Transformation to canonical variables {s;, p;;} = 6;; (i,j = 1,2)

E nc.mdc thc

quantum effects

U, U,
. Hy ~ |pi +p2 405, tat ps, tt 2e* V,(By, B, S1,52)
! 1 2

M. Bojowald, J. Phys. A: Math. Theor. 55, 5040006 (2022)
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Quantum model: set-up

Advantage of this approximation:

Work on an extended (finite) phase space

(2 classical + 2 quantum degrees of freedom)

|

Use the previous techniques to study chaos

|

_ 5 Is the quantum system
Compare with the classical results

more or less chaotic?
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Quantum model: chaos

1. Lyapunov exponent: Is it chaotic?

‘roblem: i e present coordinate syste P, 81,582, P+, P, Pe.» Ps e Lyapunov exponent cannc
Problem: in the present coordinate system (f3, S1,S2, P+ 5,1 Ps,) the Lyapunov exponent cannot
be properly computed

Extend the Misner-Chitre canonical transformation: (T,&,8) — (I,¢&, 0,0,

Classical
Misner-Chitre
transformation

2
h(py) = \/(pfb ~ U +U)) —anU,  §21, TeR  6oe@m  ¢el0o2n)
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Quantum model: chaos

1. Lyapunov exponent:

* As in the classical case, each trajectory on the phase space is isomorphic to a

geodesic on a Riemannian manifold with metric

V Necessary conditions to compute the Lyapunov exponent
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Quantum model: chaos

1. Lyapunov exponent:

* As in the classical case, each trajectory on the phase space is isomorphic to a

geodesic on a Riemannian manifold with metric

Chaotic geodesic floaw The quantum Mixmaster model is chaotic

* The geodesic deviation equation shows that initially close geodesics exponentially

diverge — Lyapunov exponent A > 0 «— The quantum model is still chaotic
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Quantum model: chaos

2. Fractal methods: More or less chaotic than the classical system?

Quantum dynamics follow the classical picture: free motion + bounces
_ ) . _ [D. Brizuela, S. F. Uria (2022)]
o There are 3 exits - classical exits
Divide the space of initial data as classically: exit through which the system escapes
For different cross-sections (initial values of the quantum moments) measure the

uncertainty exponent the level of chaos

Compare the results with the classical one

Quantum effects reduce the level of chaos!
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Quantum model: chaos

2. Fractal methods:
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Quantum model: chaos

Interesting result: implications? (early universe...)

More approaches:  (Ongoing and future work)

1. Apply iteratively the discrete map of the quantum transition laws obtained in

[D. Brizuela, S. F. Uria (2022)]
2. Study chaos far from the singularity, where General Relativity prevails:
4 If the system is still chaotic, no quantum theory can fully eliminate the

model’s chaotic nature.

Consider a different quantization: polymeric
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Conclusions

Present the classical Mixmaster model: chaotic character
Numerically: fractal methods
Analytically: Lyapunov exponent
Remark that quantum effects must be taken into account (close to the sineularity)
Build a quantum Mixmaster model
Perform a decomposition of the wave function into its quantum moments
Consider two minimal approximations:
* Semiclassical recime
General enough for different theories of quantum eravity
Describe the system with canonical variables and finite phase space

Study quantum chaos with the previous methods (numerical + analytical):

Quantum effects reduce the level of chaos!
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