Title: Quantizing non-linear phase spaces, causal diamonds and the Casimir matching principle
Speakers: Rodrigo Andrade E Silva
Series: Quantum Gravity
Date: December 06, 2023-11:00 AM
URL: https://pirsa.org/23120030
Abstract: In the quest to understand the fundamental structure of spacetime (and subsystems) in quantum gravity, it may be worth exploring the ultimate consequences of non-perturbative canonical quantization, carefully taking into account the constraints and gauge invariance of general relativity. As the reduced phase space (or even the pre-phase space) of gravity lacks a natural linear structure, a generalization of the standard method of quantization (based on global conjugate coordinates) is required. One such generalization is Isham's method based on transitive groups of symplectomorphisms, which we test in some simple examples. In particular, considering a particle that lives on a sphere, in the presence of a magnetic monopole flux, we algebraically recover Dirac's charge quantization condition from a "Casimir matching principle", which we propose as an important tool in selecting natural representations. Finally, we develop the non-perturbative reduced phase space quantization of causal diamonds in $(2+1)$-dimensional gravity. By solving the constraints in a constant-mean-curvature time gauge and removing all the spatial gauge redundancy, we find that the phase space is the cotangent bundle of $\$ \operatorname{Diff} \wedge+\left(\mathrm{S}^{\wedge} 1\right) / \operatorname{PSL}(2, \operatorname{lmathbb}\{\mathrm{R}\}) \$$. Applying Isham's quantization we find that the Hilbert space of the associated quantum theory carries a (projective) irreducible unitary representation of the \$BMS_3\$ group. From the Casimir matching principle, we show that the states are realized as wavefunctions on the configuration space with internal indices in unitary irreps of $\$ \operatorname{SL}(2$, $\backslash m a t h b b\{R\}) \$$. A surprising result is that the twist of the diamond boundary loop is quantized in terms of the ratio of the Planck length to the boundary length.

Papers on quantization of causal diamonds:
https://arxiv.org/abs/2308.11741
https://arxiv.org/abs/2310.03100

Zoom link https://pitp.zoom.us/j/98636934234?pwd=THBCcFpYWHYzWmY0YjViY3Q1a3VYdz09

Quantizing non-linear phase spaces, causal diamonds and the Casimir matching principle

Rodrigo Andrade e Silva

December 2023

[arXiv:2308.11741, arXiv:2310.03100]

Peculiarities of quantum gravity

- Absence of local observables

$$
[\theta, c] \approx 0
$$

- Problem of time

- Quantum spacetime?

$$
[h, \pi] \neq 0
$$

- Perturbatively non-renormalizable in d>3

$$
[G]<0
$$

The canonical perspective

In the lack of experimental guidance, we should push the current theoretical framework to its limits... Lessons to be learned? Where exactly things break?

Canonical quantization is a magnificent tool, so it may be worth exploring it as carefully as possible.
\rightarrow The quantum theory "retains" the algebraic structure of classical observables
Consider the full structure of the phase space (constraints, gauge, topology)
No a priori assumptions about the Hilbert space
"Path integral is derived from the quantization"

Dirac's canonical quantization

If $\mathcal{P}=\mathbb{R}^{2 n}$, take global coordinates x^{i} and p_{i}, satisfying $\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i}$
Assume that they are represented self-adjointly, satisfying $\left[\hat{x}^{i}, \hat{p}_{j}\right]=i \delta_{j}^{i}$

Stone-von Neumann: unique unitary irrep given by wavefunctions $\Psi \in L^{2}\left(\mathbb{R}^{n} ; d^{n} x\right)$,

$$
\begin{gathered}
\hat{x}^{i} \Psi(x)=x^{i} \Psi(x) \\
\hat{p}_{j} \Psi(x)=-i \frac{\partial}{\partial x^{j}} \Psi(x)
\end{gathered}
$$

This quantization is only compatible with linear phase spaces: spectrum of x and p is whole \mathbb{R}

The uniqueness is very special and should not be taken for granted!

Dirac's canonical quantization

If $\mathcal{P}=\mathbb{R}^{2 n}$, take global coordinates x^{i} and p_{i}, satisfying $\left\{x^{i}, p_{j}\right\}=\delta_{j}^{i}$
Assume that they are represented self-adjointly, satisfying $\left[\hat{x}^{i}, \hat{p}_{j}\right]=i \delta_{j}^{i}$

Stone-von Neumann: uniquв unitary irrep given by wavefunctions $\Psi \in L^{2}\left(\mathbb{R}^{n} ; d^{n} x\right)$,

$$
\begin{gathered}
\hat{x}^{i} \Psi(x)=x^{i} \Psi(x) \\
\hat{p}_{j} \Psi(x)=-i \frac{\partial}{\partial x^{j}} \Psi(x)
\end{gathered}
$$

This quantization is only compatible with linear phase spaces: spectrum of x and p is whole \mathbb{R}

The uniqueness is very special and should not be taken for granted!

Contents

- Isham's group-theoretic quantization scheme
- The Casimir matching principle: a lesson from quantizing $\mathcal{P}=T^{*} S^{2}$
- Quantizing causal diamonds in (2+1)-dimensional gravity
- Refining the representations by Casimir matching
- Twist quantization

Isham's quantization scheme

For a linear phase space $\mathcal{P}=\mathbb{R}^{2 n}$, with global Cartesian coordinates x^{i} and p_{i}, note that the p function generates translations in x, while the x function translates in $-p$

\rightarrow Think of the group of phase space translations, $G=\mathbb{R}^{2 n}$, as the foundation of the quantization.

Isham's quantization scheme

"Find a transitive group G of symplectic symmetries of the phase space, and then construct the quantum theory based on unitary irreducible (projective) representations of G."

Each element ξ_{i} of the algebra is associated with a Hamiltonian charge H_{i}.

The Poisson algebra of these charges is homomorphic* to the algebra of G.
Transitiveness implies that this set of charges is complete (i.e., any observable can be locally expressed in terms of them).

Quantization proceeds by finding unitary irreducible representations of this algebra

$$
\left\{H_{i}, H_{j}\right\}=c_{i j}^{k} H_{k} \quad \rightarrow \quad \frac{1}{i \hbar}\left[\widehat{H}_{i}, \widehat{H}_{j}\right]=c_{i j}^{k} \widehat{H}_{k}
$$

Affine quantization

In the case of gravity, the (pre-)phase space is $\mathcal{P}=T^{*}(\operatorname{Riem}(\Sigma))$.
$\rightarrow h-h^{\prime}$ may not belong to Riem (Σ)
The group of translations, $\left(\operatorname{Sym}_{n} \mathbb{R} \times \operatorname{Sym}_{n} \mathbb{R}\right)^{\Sigma}$, does not act naturally on \mathcal{P}

$$
\left\{h_{a b}(x), \pi^{c d}\left(x^{\prime}\right)\right\}=\delta_{(a}^{c} \delta_{b)}^{d} \delta\left(x, x^{\prime}\right)
$$

But the affine group, $(\kappa, \Lambda) \in\left(S y m_{n} \mathbb{R} \rtimes G L_{n} \mathbb{R}\right)^{\Sigma}$, does:

$$
(\kappa, \Lambda)(h, \pi)=\left(\Lambda h, \pi \Lambda^{-1}-\kappa\right)
$$

[Klauder, Isham, Pilati]

The half-line

Consider " $1+1$ gravity", with reduced phase space $\mathcal{P}=T^{*} \mathbb{R}^{+}=\mathbb{R}^{+} \times \mathbb{R}$
The affine group, $(k, \lambda) \in \mathbb{R} \rtimes \mathbb{R}^{+}$, acts as $(x, p) \mapsto\left(\lambda x, \lambda^{-1} p-k\right)$
The canonical charges are:

$$
\begin{array}{c}X:=x \\ \Pi:=x p\end{array}
$$

with Poisson algebra: $\{X, \Pi\}=X$
In the quantum theory: $\frac{1}{i \hbar}[\hat{X}, \widehat{\Pi}]=\hat{X}$
○
Unitary irrep on Hilbert space: $\mathcal{H}=L^{2}\left(\mathbb{R}^{+} ; d x / x\right)$
[Klauder, Isham, Pilati]

A particle on the sphere

Now let us consider a particle living on a 2 -sphere, in the presence of a magnetic monopole flux $\int B=4 \pi g$.
S^{2} admits no global coordinates. Moreover, $H \sim(p-e A)^{2}$ is not globally-defined.
We can deal with the second issue by modifying the symplectic structure

$$
\omega=d \theta=d p_{i} \wedge d q^{i} \rightarrow d\left(p_{i}+e A_{i}\right) \wedge d q^{i}=d p_{i} \wedge d q^{i}+e d\left(A_{i} d q^{i}\right)=d \theta+e B
$$

but we still need to worry with the first issue.

A particle on the sphere

How to construct a transitive group of symplectomorphisms on $\mathcal{P}=T^{*} S^{2}$?
It is natural to start with $K=S O$ (3) acting on $S^{2} \sim S O(3) / S O$ (2).

$$
\delta_{R}(x)=R x
$$

Any action on the configuration space lifts to an action on the cotangent bundle

$$
\tilde{\delta}_{R}(p):=\delta_{R^{-1}}^{*} p
$$

This action is symplectic, but not transitive.

We need to add some sort of "vertical" translations

A particle on the sphere

Any 1-form field w on $\mathcal{Q}=S^{2}$ defines a momentum translation

$$
f_{w}(p):=p-w
$$

which is a symplectomorphism if $d w=0$.

But we want a "minimal" set of translations:
"Find a representation of K on a vector space V such that at least one orbit in V is homeomorphic to $Q^{\prime \prime}$

Any $w \in V^{*}$ can be restricted to $\mathcal{Q} \subset V$ to define an exact 1-form field on \mathcal{Q}.

A particle on the sphere

The "canonical group" is thus

In the case of the sphere, with $K=S O$ (3), we can take $V=\mathbb{R}^{3}$

$$
G=\left(\mathbb{R}^{3}\right)^{*} \rtimes S O(3)=E(3)
$$

i.e., the Euclidean group in 3d.

A particle on the sphere

A particle on the sphere

There are two independent Casimir operators

$$
\begin{aligned}
\hat{Q}_{i} \hat{Q}_{i} & =\rho^{2} \\
\hat{P}_{i} \hat{Q}_{i} & =s
\end{aligned}
$$

As the algebra is invariant under $\hat{Q}_{i} \rightarrow \lambda \widehat{Q}_{i}$, we can choose $\rho=1$.
We find irreps classified in terms of s :

$$
\begin{aligned}
& \text { States }|j, m\rangle \\
& -j \leq m \leq j \\
& j \geq j_{0}=|s|
\end{aligned}
$$

A particle on the sphere

In a basis, the classical algebra reads

$$
\begin{gathered}
\left\{P_{i}, P_{j}\right\}=\varepsilon_{i j k} P_{k} \\
\left\{P_{i}, Q_{j}\right\}=\varepsilon_{i j k} Q_{k} \\
\left\{Q_{i}, Q_{j}\right\}=0
\end{gathered}
$$

so quantization proceeds by finding a unitary irrep of the corresponding algebra

$$
\begin{gathered}
{\left[\hat{P}_{i}, \hat{P}_{j}\right]=i \hbar \varepsilon_{i j k} \hat{P}_{k}} \\
{\left[\hat{P}_{i}, \hat{Q}_{j}\right]=i \hbar \S_{i j k} \hat{Q}_{k}} \\
{\left[\hat{Q}_{i}, \hat{Q}_{j}\right]=0}
\end{gathered}
$$

A particle on the sphere

There are two independent Casimir operators

$$
\begin{aligned}
\hat{Q}_{i} \hat{Q}_{i} & =\rho^{2} \\
\hat{P}_{i} \hat{Q}_{i} & =s
\end{aligned}
$$

As the algebra is invariant under $\hat{Q}_{i} \rightarrow \lambda \hat{Q}_{i}$, we can choose $\rho=1$.
We find irreps classified in terms of s :

$$
\begin{aligned}
& \text { States }|j, m\rangle \\
& -j \leq m \leq j \\
& j \geq j_{0}=|s|
\end{aligned}
$$

A particle on the sphere

There are two independent Casimir operators

$$
\begin{aligned}
\hat{Q}_{i} \hat{Q}_{i} & =\rho^{2} \\
\hat{P}_{i} \hat{Q}_{i} & =s
\end{aligned}
$$

As the algebra is invariant under $\widehat{Q}_{i} \rightarrow \lambda \widehat{Q}_{i}$, we can choose $\rho=1$.
We find irreps classified in terms of s :

$$
\begin{aligned}
& \text { States }|j, m\rangle \\
& \begin{array}{l}
-j \leq m \leq j \\
j \geq j_{0}=|s|
\end{array} \\
& \qquad \in \frac{1}{2} \mathbb{Z}
\end{aligned}
$$

Casimir matching principle

How to select the "correct" representation?

Note that classical the two Casimirs are

$$
\begin{gathered}
Q_{i} Q_{i}=x^{2}=1 \\
P_{i} Q_{i}=-e g x^{2}=-e g
\end{gathered}
$$

Both classically and quantum mechanically, Casimirs take the same value for all states.
We propose that the value of the classical and quantum Casimirs should match.

For the sphere, we get

$$
-e g=s \in \frac{1}{2} \mathbb{Z}
$$

which is the famous Dirac charge discretization condition!

Causal diamonds: motivations

We wish to consider two things:

1. Describe quantum gravity in finite regions

Quantize causal diamonds?
2. Do it non-perturbatively
Moncrief's program

[Moncrief 89, Fischer, Carlip ..., Witten 22]

Causal diamonds: the system

$2+1$ dimensional Einstein-Hilbert gravity with $\Lambda \leq 0$

Spacetime is domain of dependence of a topological disc Σ

Dirichlet condition for the induced boundary metric (boundary length ℓ)

CMC reduction

1. Show that any diamond can be foliated by

CMCs = Constant-mean-curvature surfaces

$$
K=h_{a b} K^{a b}=\mathrm{constant}
$$

where $K^{a b}$ is the extrinsic curvature.
$\rightarrow \Lambda \leq 0$ used here.
(More generally, we could include "attractive" matter.)

CMC reduction

2. Show that the gauge is attainable

When there are corners/boundaries, deformations near the corner may not be gauge
\rightarrow Fixing the induced metric on the corner, $\left.h_{a b}\right|_{\partial}=\gamma$, enters here.
(More generally, we could extend the phase
 space by edge modes.)
[Donnelly, Freidel...]

CMC reduction

3. Show that the Lichnerowicz equation has one and only one solution

$$
\nabla^{2} \phi-R_{(h)}+e^{-\phi} \sigma^{a b} \sigma_{a b}-e^{\phi} \chi_{\circ}=0
$$

where $\chi=-2 \Lambda+\frac{1}{2} \tau^{2}$.

This provides a characterization of the constraint surface in the pre-phase space
$\rightarrow \chi \geq 0$ is used here.

CMC reduction

4. Quotient by spatial diffeomorphisms, obtaining the reduced phase space

$$
\begin{aligned}
& \tilde{\mathcal{P}}=T^{*}[\operatorname{ConfGeo}(\Sigma)] \\
& {\left[h_{a b} \sim \Psi_{*} e^{\lambda} h_{a b}\right]} \\
& \\
& \begin{array}{l}
\text { with }\left.\Psi\right|_{\partial \Sigma}=I \\
\text { and }\left.\lambda\right|_{\partial \Sigma}=0
\end{array}
\end{aligned}
$$

\rightarrow A choice of symplectic form is made here

$$
\omega=\int \delta \pi^{a b} \wedge \delta h_{a b}
$$

The reduced phase space

We find that the configuration space is

$$
Q:=\operatorname{ConfGeo}(\Sigma)=\operatorname{Diff}^{+}\left(S^{1}\right) / \operatorname{PSL}(2, \mathbb{R})
$$

so the reduced phase space is

$$
\widetilde{\mathcal{P}}=T^{*}\left(\operatorname{Diff}^{+}\left(S^{1}\right) / \operatorname{PSL}(2, \mathbb{R})\right)
$$

where symplectic form is the one associated with the cotangent bundle structure.

Physical interpretation of the states

In 2+1 there are no local degrees of freedom
Classical states correspond to shapes of causal diamonds in AdS_{3} (or Mink_{3})

Group-theoretic quantization

The configuration space $\mathcal{Q}=\operatorname{Diff}^{+}\left(S^{1}\right) / \operatorname{PSL}(2, \mathbb{R})$ is a homogeneous space for $\operatorname{Diff}^{+}\left(S^{1}\right)$

$$
\delta_{\psi}[\phi]:=\psi[\phi]:=[\psi \circ \phi]
$$

so it is natural to start with $K=\operatorname{Diff}^{+}\left(S^{1}\right)$.

The next step is to construct the vertical translations

But we could not find any representation of
 $\operatorname{Diff}^{+}\left(S^{1}\right)$ with an orbit isomorphic to \mathcal{Q}.

Canonical group for the diamond

The coadjoint representation of the Virasoro group Vira (extension of $\operatorname{Diff}^{+}\left(S^{1}\right)$ by \mathbb{R}) on its dual Lie algebra vira* \sim diff* $\oplus_{S} \mathbb{R}$, does have an orbit isomorphic to Q.
[Witten, Segal]

Thus, taking $K=$ Vira and $V=\mathfrak{v i r a}{ }^{*}$, we get a transitive group of symplectomorphisms of $\tilde{\mathcal{P}}=T^{*}\left[\operatorname{Diff}^{+}\left(S^{1}\right) / \operatorname{PSL}(2, \mathbb{R})\right]$

Canonical algebra for the diamond

Elements of $\mathfrak{v i r a}$ are characterized by $\hat{\xi}=\xi(\theta) \partial_{\theta}+x \hat{c}$. In a Fourier basis:

Configuration transl.	$L_{0}=\left(0 ; e^{i n \theta} \partial_{\theta}\right)$	$R=(0 ; \hat{c})$
Momentum transl.	$K_{n}=\left(e^{i n \theta} \partial_{\theta} ; 0\right)$	$T=(\hat{c} ; 0)$

which gives

$$
\begin{aligned}
& {\left[L_{n}, L_{m}\right]=i(n-m) L_{n+m}-4 \pi i n^{3} \delta_{n+m, 0} R} \\
& {\left[K_{n}, L_{m}\right]=i(n-m) K_{n+m}-4 \pi i n^{3} \delta_{n+m, 0} T} \\
& {\left[K_{n}, K_{m}\right]=0}
\end{aligned}
$$

Canonical charges

We can evaluate the canonical charges generated on the phase space. In this Fourier basis,

$$
L_{n} \mapsto P_{n} \quad K_{n} \mapsto Q_{n}
$$

with central charges $R \mapsto 0$ and $T \mapsto 1$.
Their Poisson algebra is

$$
\begin{aligned}
& \left\{P_{n}, P_{m}\right\}=i(n-m) P_{n+m} \\
& \left\{Q_{n}, P_{m}\right\}=i(n-m) Q_{n+m}-4 \pi i n^{3} \delta_{n+m, 0} \\
& \left\{Q_{n}, Q_{m}\right\}=0
\end{aligned}
$$

This corresponds to the BMS_{3} algebra (symmetries of $2+1$ asymptotically flat spacetimes at null infinity).
[Barnich \& Compere 07; Oblak 17]

Quantum diamonds

The quantum theory is based on some unitary irreducible (projective) representation of the canonical group $G=\left(\text { vira }^{*}\right)^{*} \rtimes$ Vira

Since G is a semi-direct product of the form abelian \rtimes group, we "can" apply Mackey's theory of induced representations. [Oblak 16]

A representation is given by "wavefunctions" Ψ that are sections of a vector bundle, whose base space is some coadjoint orbit ϑ of Vira and fibers \mathcal{H}_{H} carry a (projective) unitary irrep of the corresponding little group $H(\vartheta \sim$ Vira/H).

Casimir matching

There are many (regular) coadjoint orbits of Virasoro.
Elements of $\mathfrak{v i r a} \boldsymbol{a}^{*}$ are chaқacterized by $\tilde{\alpha}=\alpha(\theta) d \theta^{2}+a \tilde{c}$
The simplest Casimirs are \hat{T} and \hat{R}.
Classically $T=1$ implies orbit $\tilde{\alpha}=\alpha(\theta) d \theta^{2}+\tilde{c}$

and $R=0$ implies that the central \mathbb{R} "inside" H is represented trivially.

"Generalized" Casimirs: monodromy and winding

- $S L(2, \mathbb{R})$-conjugacy classes of monodromy matrix \mathbf{M}

Defined from Hill's operator: $\tilde{\alpha} \mapsto 4 a \frac{\partial^{2}}{\partial \theta^{2}}+\alpha(\theta)$, acting on densities F of weight $-1 / 2$
Given a basis of two (normalized) solutions, $F_{1}(\theta)$ and $F_{2}(\theta)$, the monodromy matrix is

$$
\mathbf{F}(\theta+2 \pi)=\mathbf{M F}(\theta) \quad \mathbf{F}=\binom{F_{1}}{F_{2}}
$$

The conjugacy class of \mathbf{M} is constant along each coadjoint orbit.

$$
\mathfrak{M}:=\left[\mathscr{P} \exp \int_{0}^{2 \pi} d \theta\left(\begin{array}{cc}
0 & 1 \\
-\frac{\sum_{n \in \mathbb{Z}} \widehat{Q}_{n} e^{-i n \theta}}{8 \pi} & 0
\end{array}\right)\right]
$$

- Winding number w : complete "wrappings" of $F_{1}(\theta) / F_{2}(\theta)$ as θ goes around S^{1}

"Generalized" Casimirs: monodromy

- $\quad S L(2, \mathbb{R})$-conjugacy classes of monodromy matrix \mathbf{M}

Classically,

$$
\left[\mathbf{M}_{\mathcal{Q}}\right]=\left[\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right]
$$

Implies orbits $\vartheta=\operatorname{Diff}^{+}\left(S^{1}\right) / P S L^{(n)}(2, \mathbb{R})$, with $n \in 2 \mathbb{N}-1$

- Winding number w

Classically, $\quad w_{Q}=1 \Rightarrow n=1$

Thus $\vartheta=\operatorname{Diff}^{+}\left(S^{1}\right) / \operatorname{PSL}(2, \mathbb{R})$, so

$$
\mathcal{H}=\{\text { Wavefunctions on } \mathcal{Q} \text { with indices in a projective unitary irrep of } \operatorname{SL}(2, \mathbb{R})\}
$$

Spin/Twist

The charge P_{0} can be interpreted as the spin of the diamond.
It corresponds to the $S O(2)$ subgroup of $\operatorname{Diff}^{+}\left(S^{1}\right) \subset$ Vira

We can also show that P_{0} is proportional to the twist \mathcal{T} of the diamond corner

The twist is related with the holonomy induced on the normal bundle of the loop:
"If we Fermi-Walker transport a frame along the loop, it will come back boosted by a (hyperbolic) angle equal to the twist"

Conclusion

- The consequences of a "careful" canonical quantization deserve more attention, especially in the corfext of gravity.
- \mathbb{C}-valued wavefunctions on \mathcal{Q} should not be taken for granted. Additional principles are needed to select preferred representations (e.g., Casimir matching).
- We studied the quantization of causal diamonds in 2+1 gravity, implementing Moncrief's program at the classical level and Isham's method to quantize it.
- What is the nature of these quantum causal diamonds?

Can the twist quantization be promoted to a general statement about loops in $A d S_{3}$? Generalizations (with matter, higher dimensions)... Construct the whole "quantum spacetime" by gluing causal diamonds? Thermodynamics/entanglement of causal diamonds?

Thank You!

