Title: Quantum error-correcting codes from Abelian anyon theories
Speakers: Tyler Ellison
Series: Quantum Matter
Date: December 06, 2023-11:00 AM
URL: https://pirsa.org/23120028
Abstract: To perform reliable quantum computations in the midst of noise from the environment, it is imperative to use a quantum error-correcting code -- i.e., a scheme for redundantly encoding information so that errors may be detected and corrected as they occur. One of the most promising classes of quantum error-correcting codes are those based on topological phases of matter, such as the celebrated toric code. Although there is a rich classification of topological phases of matter, the toric code has by far received the most attention as a practical quantum error-correcting code, due to its simple representation within the stabilizer formalism.

In this talk, I will discuss three works in which we extend the stabilizer formalism to topological orders beyond that of the toric code. This includes the construction of two-dimensional stabilizer codes characterized by Abelian topological orders with gapped boundaries, three-dimensional stabilizer codes that host arbitrary two-dimensional Abelian topological orders on their surface, and two-dimensional subsystem codes also characterized by arbitrary Abelian topological orders. This work thus opens the door to encoding and processing quantum information using the exotic properties exhibited by the wide range of Abelian topological phases of matter.

Zoom link https://pitp.zoom.us/j/94640905425?pwd=aDd0Qnl1TUU0QytaNWJJLzEyZlQrQT09

Yale

Quantum error-correcting codes from Abelian anyon theories

Tyler Ellison

Yu-An Chen

Arpit Dua

Wilbur Shirley

Nat Tantivasadakarn

Dom Williamson

Main takeaways

3D topological Pauli stabilizer codes

Hosts anyon theory on the boundary

2D topological Pauli subsystem codes

Outline

- Motivation and background
- \mathbb{Z}_{4} toric code
- Abelian anyon theories
- 2D topological Pauli stabilizer codes
- 3D topological Pauli stabilizer codes
- 2D topological Pauli subsystem codes
- Future directions

Motivation and background

Motivation

Quantum computers have the potential to:

- Solve quantum chemistry problems \rightarrow advancement in drug design, carbon fixation
- Simulate complex condensed matter systems

Problem: errors are a serious obstruction to reliable computations

- Small components - Quantum noise

Motivation

Neutral atom array

Superconducting qubits

Bosonic qubits

Solution: quantum error-correcting codes!

- Use many qubits to encode a small number of "logical" qubits • Ex. Toric code

This work: Search for new quantum error correcting codes to

- Improve error thresholds - Reduce computational overheads - Better suited for current hardware

Background: \mathbb{Z}_{4} toric code and Abelian anyon theories

Background: \mathbb{Z}_{4} toric code

Hilbert space:

$$
X=\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right), \quad Z=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -i
\end{array}\right), \quad \begin{gathered}
X^{4}=1 \\
Z^{4}=1 \\
Z X=i X Z
\end{gathered}
$$

$\circ=4$-dimensional qudit

Hamiltonian:

(Deconfined \mathbb{Z}_{4} gauge theory with matter)

- Topological Pauli stabilizer code
- 16-dimensional ground state subspace on a torus
- Locally indistinguishable ground states

Background: \mathbb{Z}_{4} toric code

Anyons: local excitations that cannot be created by local operators (Stabilizer codes)

$$
H=-\sum_{0}+b_{0}-\sum_{0}
$$

Violates vertex stabilizer

$-=Z$

Background: \mathbb{Z}_{4} toric code

Anyon types:

	1	e	e^{2}	e^{3}
1	1	e	e^{2}	e^{3}
m	m	$e m$	$e^{2} m$	$e^{3} m$
m^{2}	m^{2}	$e m^{2}$	$e^{2} m^{2}$	$e^{3} m^{2}$
m^{3}	m^{3}	$e m^{3}$	$e^{2} m^{3}$	$e^{3} m^{3}$

Local excitations created by local operators

Fusion rules: $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ group generated by e and m
Examples: $e \times m=e m, \quad e m \times e m=e^{2} m^{2}, \quad e^{2} m^{2} \times e^{2} m^{2}=1$

Exchange statistics: Exchange statistics of $e^{p} m^{q}$ is $i^{p q}$

$$
\overbrace{}^{e} \quad e^{e} \quad=
$$

$\overbrace{0}^{m}=$

$$
\overbrace{0 m}^{e m}
$$

Background: Abelian anyon theories

Anyon types: $\left\{1, a_{1}, a_{2}, \ldots, a_{n}\right\}$
$\underline{\text { Fusion rules: }} \quad a_{i} \times a_{j}=a_{k}, \quad a_{i} \times 1=a_{i}$

Exchange statistics:
(Satisfies certain consistency conditions)

(Braiding relations are determined by the exchange statistics)

Classification of 2D topological Pauli stabilizer codes

- What Abelian anyon theories are captured by 2D topological Pauli stabilizer codes?

Topological Pauli stabilizer code

- Translation invariant
- Prime p-dimensional qudits

Finite-depth circuit

Stack of \mathbb{Z}_{p} toric codes

Are more exotic anyon theories captured by topological Pauli stabilizer codes on composite-dimensional qudits?

2D topological Pauli stabilizer codes

PRX Quantum 3, 010353

Double semion stabilizer code

Hilbert space:

$$
\begin{aligned}
Z^{4} & =1 \\
X^{4} & =1 \\
Z X & =i X Z
\end{aligned}
$$

$$
\circ=4 \text {-dimensional qudit }
$$

- Topological Pauli stabilizer code
- 4-dimensional ground state subspace on a torus
- Locally indistinguishable ground states

Hamiltonian:

Double semion stabilizer code excitations

Anyons: local excitations that cannot be created by local operators
(Stabilizer codes)

Violates vertex terms and
plaquette terms

$-=Z \quad \mid=X$

Double semion stabilizer code anyon theory

Anyon types: $\{1, b, s, \bar{s}\}$

$$
b=
$$

Fusion rules: $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ group generated by b and s

$$
b \times b=1, \quad s \times s=1, \quad \bar{s} \times \bar{s}=1, \quad b \times s=\bar{s}, \ldots
$$

Exchange statistics:

Double semion stabilizer code anyon theory

Anyon types: $\{1, b, s, \bar{s}\}$

Distinct from toric code or a stack of toric codes!

Fusion rules: $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ group generated by b and s

$$
b \times b=1, \quad s \times s=1, \quad \bar{s} \times \bar{s}=1, \quad b \times s=\bar{s}, \ldots
$$

Exchange statistics:

Anti-semion!
$\left({ }^{\bar{s}} \quad \stackrel{\bar{s}}{9}=-i{ }^{\bar{s}}{ }^{\bar{s}}\right.$

Construction of the double semion stabilizer code

Double semion exchange statistics:
\mathbb{Z}_{4} toric code exchange statistics:

$$
\begin{aligned}
& \overbrace{}^{e^{2}} \stackrel{e}{ }^{e^{2}}=e^{e^{2}} \\
& \overbrace{0}^{e m} \overbrace{0}^{e m}=i \overbrace{0}^{e m}
\end{aligned}
$$

Fusion rules do not match

$$
\begin{array}{rrr}
s \times s=1 & e m \times e m=e^{2} m^{2} \\
\bar{s} \times \bar{s}=1 & e m^{3} \times e m^{3}=e^{2} m^{2}
\end{array}
$$

Condense $e^{2} m^{2}$

Construction of double semion stabilizer code

$$
\begin{aligned}
& \text { Condense } e^{2} m^{2} \\
& J_{e} \rightarrow \infty
\end{aligned}
$$

General construction

Exhausts all Abelian anyon theories that admit a gapped boundary!

$$
\text { Modular: For every } a_{i} \text { there exists } a_{j} \text {, such that } \theta\left(a_{i} a_{j}\right) \neq \theta\left(a_{i}\right) \theta\left(a_{j}\right)
$$

Lagrangian subgroup: Subgroup of bosons \mathcal{L}, such that, for every $a \notin \mathcal{L}$, there exists $b \in \mathcal{L}$ with $\theta(a b) \neq \theta(a) \theta(b)$

Beyond 2D stabilizer codes

Can Abelian anyon theories without gapped boundaries be captured by codes beyond 2D stabilizer codes?

3D topological Pauli stabilizer codes

Anyon theories without gapped boundaries!

2D topological Pauli subsystem codes

Non-modular anyon theories!

3D topological Pauli stabilizer codes

PRX Quantum 3, 030326

Chiral semion boundary code

Hilbert space:

$$
\begin{aligned}
Z^{4} & =1 \\
X^{4} & =1, \\
Z X & =i X Z
\end{aligned}
$$

$$
\circ=4 \text {-dimensional qudit }
$$

- Topological Pauli stabilizer code
- 2-dimensional ground state subspace on a solid torus
- Locally indistinguishable ground states

Chiral semion boundary code

Hilbert space:

$$
\begin{aligned}
Z^{4} & =1 \\
X^{4} & =1 \\
Z X & =i X Z
\end{aligned}
$$

$$
\circ=4 \text {-dimensional qudit }
$$

- Topological Pauli stabilizer code
- 2-dimensional ground state subspace on a solid torus
- Locally indistinguishable ground states

Hamiltonian:

Chiral semion boundary code

Anyons: local excitations that cannot be created by local operators (Stabilizer codes)

> Boundary
> $-=Z$
> ر $=X$
> $\mathrm{I}=X$
> Violates vertex terms and plaquette terms

Chiral semion anyon theory

Anyon types: $\{1, s\}$

$$
s=
$$

Fusion rules: \mathbb{Z}_{2} group generated by s

$$
s \times s=1
$$

Exchange statistics:

$$
\overbrace{}^{s}=i
$$

Chiral semion theory does not admit gapped boundaries!

Construction of the chiral semion boundary code

Stack of double semion stabilizer codes

Construction of the chiral semion boundary code

Stack of double semion stabilizer codes

Construction of the chiral semion boundary code

Stack of double semion stabilizer codes

Construction of the chiral semion boundary code

General construction of boundary codes

Stacks of 2D topological Pauli stabilizer codes

New 3D Pauli stabilizer code

Exhausts all modular Abelian anyon theories!

2D topological Pauli subsystem codes

Quantum 7, 1137 (2023)

Subsystem codes

Gauge group:

May be non-Abelian!
 $\mathcal{G} \subset$ Pauli group

Stabilizer group:

$\mathcal{S}=$ center of $\boldsymbol{\mathcal { S }}$
 (Up to roots of unity)

Gauge group induces factorization of code space

$$
\left(\mathcal{H}_{G} \otimes \mathcal{H}_{L}\right) \oplus \mathcal{H}_{C}^{\perp}
$$

Gauge subsystem
Logical subsystem

$\mathbb{Z}_{4}^{(1)}$ subsystem code

Hilbert space:

$$
\begin{aligned}
X^{4} & =1, \\
Z^{4} & =1, \\
Z X & =i X Z
\end{aligned}
$$

$\circ=4$-dimensional qudit

- Topological Pauli subsystem code
- 2-dimensional logical subsystem on a torus
- Robust against local errors

Gauge group:

Stabilizer group:

$$
\mathcal{S}_{\mathbb{Z}_{4}^{(1)}}=\left\langle\begin{array}{c}
\left.x^{\lceil } Z^{+} Z^{\dagger}\right\rceil \\
-x+x^{\dagger} Z \\
1
\end{array}\right\rangle
$$

$\mathbb{Z}_{4}^{(1)}$ subsystem code

Anyons: Violations of gauge operators that cannot be created by local operators (Subsystem codes)

Violates vertex gauge operators and

$$
-=Z \quad \mid=X
$$

$\mathbb{Z}_{4}^{(1)}$ subsystem code anyons

Anyon types: $\left\{1, s, s^{2}, s^{3}\right\}$

$$
s=
$$

Fusion rules: \mathbb{Z}_{4} group generated by s

> Non-modular anyon theory!

Subsystem codes

Stabilizer codes:

- Defines unique exactly-solvable Hamiltonian

$$
H=-\sum_{S \in \mathcal{S}} S+\text { h.c. }
$$

- Stabilizers are common conserved quantities

- Anyons are excitations of H

Subsystem codes:

- Defines Parameter space of Hamiltonians

$$
H=-\sum_{G \in \mathcal{G}} J_{G} G+\text { h.c. }
$$

Exhibits

 various phases and phase transitions- Stabilizers are common conserved quantities
- (Informal) Anyons are excitations common to the gapped Hamiltonians

Construction of $\mathbb{Z}_{4}^{(1)}$ subsystem code

Gauging out:

Append string operators of anyon to stabilizer group (or gauge group) to form new gauge group

Construction:

Gauge out $e^{3} m$ in \mathbb{Z}_{4} toric code:

$$
\begin{aligned}
& e^{3} m \text { short string operators }
\end{aligned}
$$

Construction of $\mathbb{Z}_{4}^{(1)}$ subsystem code

Gauging out:

Append string operators of anyon to stabilizer group (or gauge group) to form new gauge group

Construction:

Gauge out $e^{3} m$ in \mathbb{Z}_{4} toric code:
Can simplify generators!

General construction

Exhausts all Abelian anyon theories!

Main takeaways

Anyon theories with gapped boundaries!

3D topological Pauli stabilizer codes

Modular anyon theories!

2D topological Pauli subsystem codes

Arbitrary anyon theories!

Further comments on 3D stabilizer codes

3D Pauli stabilizer code

Trivial paramagnet

$$
H=-\sum_{e} Z_{e}+\text { h.c. }
$$

- \mathcal{U} is locality preserving - i.e., maps local operators to local operators via conjugation
- If \mathcal{A} does not admit a gapped boundary, then \mathcal{U} is not a finite-depth circuit
- First non-Clifford example and conjectured classification of locality-preserving unitaries

Further comments on subsystem codes

- Evidence of Fibonacci anyons, but recent calculation suggests local minimum of numerics

Measurement 2

Future directions

Future directions

Classification of local quantum error-correcting codes (QECC)

Fault tolerance of non-Abelian quantum computation

Diagnostics of new QECC and identifying ideal platforms

Measurement-based and singleshot codes from boundary codes

Develop QECCs for continuous variable or fermionic systems

Mixed-state topological orders

Condensation vs. Gauging out

Condensation of a (Stabilizer code)
Gauging out a (Subsystem code)

- $\theta(a)$ is arbitrary
- Add short string operators of a to gauge group
- No identification of anyons
- Anyons become confined

$\mathbb{Z}_{4}^{(1)}$ subsystem code

Anyons: Violations of gauge operators that cannot be created by local operators (Subsystem codes)

Violates vertex gauge operators and

$$
-=Z \quad \mid=X
$$

Further comments on subsystem codes

- Evidence of Fibonacci anyons, but recent calculation suggests local minimum of numerics

Measurement 2

