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Abstract: Uncertainty relations are a familiar part of any introductory quantum mechanics course. In this talk, | will summarize how uncertainty
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Uncertainty relations in quantum mechanics

o1 1
AXAp > — AEAL 2 —
2 2
position-momentum uncertainty relation energy-time uncertainty relation
about non-commuting operators no time operator
about simultaneous measurements At ~ lifetime of a state
A=%B=p = ARAp> 3 A= o) (¢Yo|, B=H = AHt, > %
A unified approach
1 2
A’AN°B > 5: (1A, B])
I

Robertson uncertainty relation
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Uncertainty relations as performance limits

For metrology: how much information can we extract from a parameterized quantum state?
For computation: how quickly can we perform a computation or prepare a state?

Using how many/what resources (energy, entanglement, control parameters, time, ...)?

Quantum sensor networks Quantum annealing
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Outline for rest of talk

I. Uncertainty relations as speed limits
Takeway: ultimate speed limits are connected to geometry of state space

Il. Application: quantum sensor networks

Takeway: uncertainty relations give performance limits and resource requirements

I1l. Application: quantum annealing

Takeway: rigorous approaches to quantum annealing beyond the adiabatic regime

IV. Summary/outlook

4/24
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Uncertainty relations as speed limits

Warm up: Mandelstam-Tamm style speed limit

? A2A = (A% — (A2, (A) = Tr(pA
If B =H, (0A/0t) = 0 (A fixed): If A= [1);) (1);| integrate to get:
: d(A T
_"<[A: H]) = % AHt, > >
Ehrenfest theorem 1Y > =
Mandelstam-Tamm
Thus: S
2AAAH > M o
— | Ot >
o>
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A tighter speed limit

1 2 1 ° Speed limit
2 2 = . Ead peea himi
eyl 2<{A’ g Al o ‘Zi([A’ B)) from first term?
Schrodinger uncertainty relation
Let L generate time evolution via ) .
8,0 {L ) — Lp —I—pL If B=L, (dA/dt) =0:
AAAL > ‘ sd |

P(t)o/—m)r- }3(‘\3)+L5L,P}/9‘]dt MT bound with 2AH — AL
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The geometric nature of the speed limit

It can be shown that 2AH > AL so we have a tighter speed limit:

O(A)

2AAAH > AAAL > 57

Quantum Fisher Information

F(t) = A%L

Geometric interpretation: natural notion of distance between p(t) and p(t + dt) in projective
Hilbert space.

Holds for any parameter A\ = precision limits for metrology

7/24
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Application |: Precision limits for quantum metrology
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The quantum Cramér-Rao bound

Goal: a lower bound on precision of estimating unknown parameter \ encoded in state

A Proof Sketch M)

Suppose 3 A such that (A) = A =

Estimate \ via v experimental repititions as \ = (A), e I PR i 1 6 -
For large number of repetitions v: (A), — (A) and A = %

Uncertainty relation becomes:

1
Nevia

AA\/_>|8<A | — A=

quantum Cramér-Rao bound
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Function estimation in a quantum sensor network

how precisely can | measure a function g(A)?
how do | design optimal protocols to acheive this?

what resources (i.e. entanglement) do those protocols require?

10/24
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Function estimation for qubit sensors

couple independent local parameters A € R? to a network of d qubit sensors via

d
1 Z
H = §Zgj)\j+Hc
=i

task: measure a linear function g(A) = a - A. [Eldredge et. al. PRA (2018)]

Optimal performance for this problem: Aqg > %
Also:
® analytic functions g(A) [Qian et. al. PRA (2019)] Ry

® algebraic approach to protocols, minimizing entanglement [Ehrenberg, JB et. al. PRR (2023)]

* dependent field amplitudes A\(8) € RY [Qian, JB, et. al. PRA (2021)]
¢ multiple functions [JB et. al. PRR (2021)]

® non-commuting generators, interferometers, applications to geophysics, ... [in prep]

11/24
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Deriving the function estimation precision bound

apply quantum Cramér-Rao bound optimized over fixing extra d.o.f.

1 1
V. A > ma T e 21512
ar(§) 2 fxing extra d.of. F(q) — fixing extra dod. ¢2 |84l

|-]|s = (max eigenvalue) — (min eigenvalue) [Boixo et. al. PRL (2008)]

84 is defined with respect to extra d.o.f.

15 1 1,
Jj=1 ~ > Jj>1
gq q

Optimal choice of fixing extra d.o.f. corresponds to optimizing over 3 s.t. 3 a = 1, yielding

2
IS

Var(§) =

12/24
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A function-dependent Heisenberg scaling

Var(§) >

entangled unentangled
o e
Var(§) > ~—3*
precision gain = ]l
el oo
best case worst case
a=(1,1,---,1)7 a = (1,0,

precision gain = Vd

2
||GH2

2

precision gain = 1
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From bounds to protocols

For the bound to be saturable, the quantum Fisher information matrix must be of the form:

t2 o ... 2«
% < Ul

Fla)=| o — F(X) =

|.e. must exist a choice of fixing extra d.o.f. that gives no useful information

Heavily constrains the allowed probe states/control operations
1 .
FNje = 50 H Had) = Hp(Hi), H; = —iU"(8;0)

Next: Pick states from the allowed families subject to relevant constraints (entanglement,
number/type of control operations, etc.)

14 /24
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Minimum entanglement protocols

Example: minimize amount of entanglement used at any point during the encoding process

Suppose that

Any optimal protocol requires at least, but no more than, k-partite entangled states.

Proof approach:
® no more than: provide an explicit protocol using k-partite entangled states

® requires at least: proof by contradiction assuming existence of a protocol using
(k — 1)-partite entangled states violates saturability conditions

15 /24
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Taking stock

Robertson uncertainty relation — quantum Fisher info. — Cramér-Rao bnd. — metrology

Uncertainty relations allow us to:
® understand the limits of metrological performance
e derive optimal protocols

® understand resource requirements (i.e. entanglement)

Next: These same tools can be applied to analyze quantum annealing.

16 /24
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Application Il: Limits of computation for quantum annealing

Task: starting from ground state of Hp prepare ground state of H;

H(t) = (1 - g())Ho + g(t)Ha.

g(O) =0, g(tf) =1,

adiabatic regime general annealing bounds
adiabatic theorem guarantees success if [Garcia-Pintos, Brady, JB, Liu, PRL (2023)]

slow enough interpolation

first general, rigorous bounds beyond

1 adiabatic regime

tr (I := min. eigenvalue gap)

e

comes down to upper bounding

sufficient, but not necessary condition

[Jansen, Ruskai, Seiler J. Math. Phys. (2007)]
[JB et. al. PRA (2018,2019,2022)]
[JB et. al. PRL (2021)]

d{(H1): d{Ho)¢

dt dt
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A loose bound

Assume: ground state energy of Hy, H; = 0.

Then, from Ehrenfest’s theorem + a bit of algebra

d{Ho): d{H1):

’Tr(pt[Hlﬁ HO]) = dt dt

From Robertson uncertainty relation

d(Ho)e d{Hy):

2AHoAH, >
05l =\ gt dt

Integrating from 0 to t¢ and the fact that AH; < 2 || H;|| gives a bound on annealing time t¢

2({(Ho)t, + (H1)o — (H1)¢,)
| Holl || Ha ||

tr 2>
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A sequence of tighter bounds

Theorem (A Lower Bound on Annealing Times)

Let Hy and Hy be a pair of Hamiltonians with smallest eigenvalue zero. Then an annealing
schedule of time tf obeys

<H0>ff + <H1>0 - <H1>tf] v 1

I[Ho, Hu]| nj

tr 2 T = T2 = T3, where Tj:[
T

SN

1 [
= 1-5" p2 =
mi=or [ Gilpr)de / \/ Z (At 73

b o indep. of schedule

coherence as a resource
useful for adtabattc annealing

(H1)¢, ~ fidelity, Cy : measure of coherence, pj+ : population in energy eigenbasis

19/24
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Saturable by adiabatic and non-adiabatic annealing schedules

For instance:
® unstructured search via locally optimized adiabatic algorithm [Roland and Cerf (2002)]

® Hamming spike via numerically optimized algorithm (diabatic cascade) or QAOA
[Muthukrishnan et. al. PRX (2016); Bapat and Jordan Quantum Inf. Comput. (2019)]

I — X; Jo— .
HOZZ 5 J, lez 5 J—|—(Sp|k€)

J J

10...0>

doesnt "see’ spike

"{Df> ~ e—iMXW/4e—iMz7r/4 |w'>

T3 = 1V
N>

Ho\mmins weifrlf\‘t
(e.g. hav. of 0101=2) 20/24

Pirsa: 23120024 Page 21/25



Bounds with catalyst Hamiltonians

Corollary

Given an annealing schedule of time tf specified by the time-dependent Hamiltonian

N¢
H(t) = H(t)+ > f2HE,
a—il

where { HZ} are arbitrary control Hamiltonians with schedules {f?} > 0 such that f§ = f2 =0,

:

o (Ho)t, + (H1)o — (H1)¢,
| [, Hol || + 20, || [+ — Ho, He]

e Relevant for shortcuts to adiabaticity

e if 73 is tight, catalysts cannot help

21/24
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Another approach to bounds

On the stability of solutions to Schrodinger’s equation MIS in Ryd berg atom arrays [Ebadi et' al'
e Science (2022), Cain et. al. (2023)]
our theorem Task: Find largest set of vertices in unit-disk graph
1 with no shared edges (NP-hard)
ChiioRa N = T
tr rS ~—— @y
N~ tunneling P RN
local adiab. ) Et‘im’ A W — B
© o1 T L . o1 .
E’g i* % % % -;Li):):)timal
. = § l[}J | independent sets
165> = 16S(S)> +165(S)> 85 | ncependent ses
w = Q- Qa0 scooe
100 T : _ :f : o :[[ — ¢ :_._f“_:
w010t 10?10 78 %
B . Theoretical quantum - E—% o e
theorem |f_ runtime (1/52)
s
s = I6:S(S)> |GS) =~ |opt. indep. sets) + |nearly. opt. sets)
I6S(S»>— 7
= ‘tuvme_hng
v
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Summary and outlook

Takeaway # 1: Uncertainty relations a tool for understanding limits of measurement and
computation and the resources required to reach them.

Takeaway #2: Rigorous performance bounds for quantum annealing beyond adiabatic regime.

Key question

What resources to achieve the annealing bounds?

Quantum sensor networks Quantum annealing
® non-commuting generators e full understanding of saturability
® secure, delegated sensing ® classical speed limits and the sign problem
® connections to Hamiltonian learning e fast vs. robust annealing?
® specific implementations (e.g. gravimetry) ® applying intermediate timescale adiabatic

theorem to understand experimental and
numerical results

23/24

Pirsa: 23120024 Page 24/25



Quantum Metrology
Alexey V. Gorshkov (UMD/NIST)

Przemek Bienias (Amazon)

lgor Boettcher (University of Alberta)
Adam Ehrenberg (UMD)

Luis Pedro Garcia-Pintos (Los Alamos)
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Akshita Gorti (Cornell)

Pradeep Niroula (UMD)

Timothy Qian (MIT)

Randomized Measurement
Jonathan Kunjummen (UMD)

Niklas Mueller (UW)

Quantum Annealing
Lucas T. Brady (NASA QuAIL)

Luis Pedro Garcia-Pintos (Los Alamos)
Michael Jarret (George Mason)

Yi-Kai Liu (UMD/NIST)

Timothy (Connor) Mooney (UMD)

Quantum Simulation
Andrew Childs (UMD/NIST)

Zohreh Davoudi (UMD)
Alexey V. Gorshkov (UMD/NIST)
James Watson (UMD)
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