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Abstract: Recently, models with different properties have been proposed for polymerized dust collapse and regular black holes. To fully understand
their properties and differences, we provide a systematic procedure to construct effective polymerized spherically symmetric models encoding
holonomy corrections as $1+1%d field theory from effective regular cosmological dynamics or stationary effective metrics. We apply this formalism
and consider models that have the following advantages. The effective dynamics can be derived from a class of extended mimetic gravity
Lagrangians in 4 dimensions. The models admit a consistent Lemaitre-Tolman-Bondi (LTB) condition, by which the dynamics is completely
decoupled along the radia direction in LTB coordinates, trivializing the junction condition in dust collapse. The class of effective dynamics admits a
polymerized Birkhoff-like theorem, which leads to a stationary effective metric in the polymerized vacuum. The effective dynamics can reproduce
known regular black hole solutions, including Bardeen and Hayward, by a suitable choice of holonomy corrections. As a concrete example, we
construct an effective model compatible with the improved dynamics of loop quantum cosmology in the decoupled LTB sector. We compare it with
several effective polymerized models recently introduced in the context of loop quantum gravity and gain some new insights into the presence of
shocks.

Zoom link https://pitp.zoom.us/j/999667954187pwd=Ty9ImMRXNML 3NsUXdvcU1WUTdCaWpVZz09
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Hongguang Liu

Spherically symmetric polymer models

Covariance, polymerized LTB condition, polymerized vacuum solution, and reconstruction

* |ntroduction:
Review polymer models, classical spherically symmetric spacetime and LTB condition

* Spherically symmetric polymer models:

* Polymerized LTB condition: decoupled dynamics along radial direction, trivializing the junction
condition in dust collapse

® Polymerized vacuum solution and Birkhoff-like theorem
® Extended mimetic theory as the underlying covariant Lagrangian

* Examples

® Bardeen and Hayward as the polymerized vacuum solution
®* LQC as the decoupled theory in the LTB sector: bouncing solution without a shock

* Summary and Outlook
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Bouncing cosmology

Effective dynamics from loop quantum cosmology (LQC)
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Effective dynamics

® Scalar field defines the internal
time

* Effective dynamics from
underlying quantum theory

® Effective dynamics captures the
main quantum effects encoded in
« (sharply peaked states remain
sharply peaked)

® Bouncing solution with a critical
density
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Bouncing cosmology

Effective dynamics from loop quantum cosmology (LQC)
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Effective dynamics

Pic from [Li and Singh, 23’
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Scalar field defines the internal

namics from
underlying quantum theory

® Effective dynamics captures the
main quantum effects encoded in
« (sharply peaked states remain
sharply peaked)

® Bouncing solution with a critical
density
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Spherically symmetric spacetime

° - 4+ = al/a| ™| D

1+1d field theory (infinitely many d.o.f) with canonical variables £*, E* and their conjugate —

momenta K., K,
H

&
Generalized Gullstrand-Painlevé metric: ds” = — N (¢, z)dt? +

E*(t,x)?
|E=(t, )|

Temporal gauge fixing: N = 1,7 = ¢ with non-rotational dust iy B o s O
Giesel and Thiemann 07,15

i o / &'z /[det(g)|5 (60, 70,7 +1)

(dz + N®(t,z)dt)? + |E® (¢, z)|dQ?

Physical Hamiltonian: Hy = /d:[: C+ N*°C,, C = —p+/| det(g)]
1 E? [ AK. K, K ol ol -l N i
C@ =675 [‘E ( B9 +E)+(2E¢) ‘”2@(@) @), Ca(e) = G (B°Ky' - KeE™') (2)

EoMs: Hamilton equation:
dO

= =dO.H
= {O,Hp}

Conserved quantity: scalar density C' conserved on diffeo invariant solutions C,, = 0
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Lemaitre-Tolman-Bondi (LTB) condition and dust collapse

Hongguang Liu

Gauge fixing of C,:
62
from Generalized Gullstrand-Painlevé metric: —dt? + %-)_(dm + N*dt)? + E*d0?, E* =R2

&
LTB condition
Areal gauge: E* = r? (E®) —2y/1+ E(z)E?
)2 .
—di? + %(dr + N=dt)2 + r2d02 LTB ;netnc
: (R')
—dt2 B el S 2 RQdQZ
* 1+ E(x) o
t
t I :
. : .- _horizon
L ) i singularity, -
singularity horizon | >N9T -
dust '
dust : vacuum
vacuum ball
ball
Xz

Cosmology R = za(t)

Pirsa: 23110084 Page 7/29



V osH - @ | BEmEmes = e |E 5 |/ | @) | B

Lemaitre-Tolman-Bondi (LTB) condition and dust collapse

Hongguang Liu

Gauge fixing of C,.:
62
from Generalized Gullstrand-Painlevé metric: —dt? + %)—(dm + N%dt)2 + BE=dQ?, E* =R2

LTB condition
Areal gauge: E* = r? — (E®) —2y/1+E(z)E? "l’ CX

Py2 5
—dt? + @ (dr + N%dt)? + r2d0> SR EE (&, x)

r

———m——— 3 e 4 %dﬁ 1 RA02 E
YN Y s (>
S

T o :
: . i Rorizon
: i singularity, -
singularity horizon R 4
dust |-
dust vacuum
vacuum ball
ball
xT
d T

Cosmology R = za(t)
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Lemaitre-Tolman-Bondi (LTB) condition and dust collapse

® dust worldline: z = const lines Hongguang Liu

* decoupled system along z: trivial junction condition
gy, P

3oL _g5? g mEghyd \J— 9,6 ” 1
1+€ C(z C(z) = —=VE=(K4)?
@ W T 0@ =55VF K@)
LTB metric
¢ . ) C conserved quantity
Py I * EoM: Friedmann equation at each z
singularity - _ .
"""" ; R? 4w C
| E(E)Z(FJF_)() P= 3ps
ctlausllt ; vacuum ® general solution in marginally bound case £ = 0
d
9
R=VE* = | V2GM@)(8() - 1) }

M (zx) := C(x) : homogeneous/inhomogeneous dust collapse
® Vacuum solution and Birkhoff theorem
1+1d field theory = infinitely many C(z) =0 = M(z) =C(z) = m = const
decoupled cosmological theory (QM) 3 2
= [ix/m(:r e t)} .

Effective dynamics of LQC can be
used!

® Stationary with killing vector field 9, = —9,.
® Uniquely determined by integration constant m.
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Lemaitre-Tolman-Bondi (LTB) condition and dust collapse

* dust worldline: z = const lines -,
* decoupled system along z: trivial junction condition q —
(Rf)z 2 2 2 ~ & 6
I o W ik S R?dQ 8,C " 1
R PN f Ola) = ——=——, Ca) = 55VE* (Ky)*(@)
LTB metric —_— T £x) .—t‘s— —
¢ y C conserved quantity
Py I * EoM: Friedmann equation at each z
singularity - ] 2 _
------- i 72 AL E A= C
T A D L )
ctlausllt ; vacuum * general solution in marginally bound case £ =0
d
9 213
R=VE® = [Z 2GM(2)(B(z) —t) }

M (zx) := C(x) : homogeneous/inhomogeneous dust collapse
* Vacuum solution and Birkhoff theorem
1+1d field theory = infinitely many C(z) =0 = M(z) =C(z) = m = const
decoupled cosmological theory (QM) 3 2
_ _ R= [—\/_m(.r—t)} :
Effective dynamics of LQC can be 2

used!

® Stationary with killing vector field 9, = —9,.
® Uniquely determined by integration constant m.
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Lemaitre-Tolman-Bondi (LTB) condition and dust collapse

* dust worldline: z = const lines -,
* decoupled system along z: trivial junction condition q -
(R,)z 2 20 ~ . ‘Q
L _d® + B 8.7 " 1
T+E@ " N C@) = -———=, C() = 35VE"(Ky)'(@)
LTB metric gracy, .—t\s— —
¢ y C conserved quantity
Py I * EoM: Friedmann equation at each z
singularity - ] _
------- : 72 Kp £ 47 C
; — = [— = =] ()5 =
=@ = (L+5) @ r=o
dust 3 vacuum * general solution in marginally bound case £ =0
ball —_— \D
9 213
R=VE® = [1\/2GM(:C)(B(9:) 1) }
> A R
T
M(g) := C(z) : homogeneous/inhomogeneous dust collapse
® Vacuum solution and Birkhoff theorem
1+1d field theory —-_infinitely many Clx) =0 = M
decoupled cosmological theory (QM) =~

Effective dynamics of LQC can be
used!

® Stationary with killing vector field & = —0q.
® Uniquely determined by integration constant m.

Pirsa: 23110084 Page 11/29



Spherically symmetric polymer theory

Effective Hamiltonian C(z) — C*(x)

Bt \
® |nverse triad corrections:

+ = [z | = | D

* Polymerization: (f(x, qu,) — f(ﬁ'm, qu,E:") , Ky = e density weight 0, E* can encode ji Giesel, HL 23
A S P

hl(E:r’)

Covariance?

Spherically
Decoupled symmetric Compatibility
theory? polymer with cosmology?
models

Polymerized
vacuum solution?

Pirsa: 23110084
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No polymerization of C.: keep spatial diffeomorphism as a continuum theory.

Ashtekar, Bodendorfer, Bojowald, Boehmer, Brahma, Campiglia, Corichi, Chiqgllil:fz0=,T-3E0]
Gambini, Li, HL, Ma, Mele, Mena Maruga, Modesto, Miinch, Navascués, Noul, @ ao, Pu
Rastgoo, Rovelli, Saini, Singh, Speziale, Pranzetti, Perez, Wang, Wilson-Ewing ...

p-scheme:

,VET — ha( E*)VE*= e Ky = \/EIKI?
o P
fo Ky = b=

oir o \/ﬁ

y N\
( Cavar ] Covariant mimetic Lagrangian
. ance |

N 4

ff//’ -,h\\_\ .
[ D led | . s
( i;ouP y \‘ Compatiable LTB condition
" eory |

. VA

N
[ Polymer Birkhoff-like theory
"-.\ Vacuum | and general solutions

o’

/ HI\\ y

Compa- \
loa i cosmology at LTB sector
\ tiablity |

r—
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Spherically symmetric polymer theory

Ashtekar, Bodendorfer, Bojowald, Boehmer, Brahma, Campiglia, Corichi, Chiqgllil:fz0=,F-4E0] \. ‘.\

EFFeCtiVE Hamiltonian C(.’L‘) sy CA [CE] Gambini, Li, HL, Ma, Mele, Mena Maruga, Modesto, Miinch, Navascués, Noul, Otmedqo, ru

Rastgoo, Rovelli, Saini, Singh, Speziale, Pranzetti, Perez, Wang, Wilson-Ewing ...

* Polymerization: (f(x, qu,) — f(ﬁ'm, qu,E:") , Ky = % density weight 0, E” can encode ji Giesel, HL 23

—\ ha(E%) . fi-scheme:
: . 1 _ e
® |nverse triad corrections: — ,VET — ha( E*)VE*® S_ fzKy = VETK,,
E=x v ET _ K,
————— ———— - PR, BeKy =b:= \/ﬁ
No polymerization of C,: keep spatial diffeomorphism as a continuum theory. \.
ey P 5y
y \(
| Cavad, : Covariant mimetic Lagrangian
'.‘\ ance /'\ ‘\
N
Covariance? g
e // e
./ \\‘ .
/ D led X _—
| Decouple \t Compatiable LTB con@
\  theory |
: A y. -t
Spherically ‘g
Decoupled symmetric Compatibility - 7___\\
theory? polymer with cosmology? /
— [ Pol \ Birkhoff-like theor
models —_— | olymer : y
\ Vacuum | and general solutions
q
\\_// v
Polymerized / .\\\ -
vacuum solution? [ Compa- | l 9
e \ tiablity /‘ cosmology at LTB sector\
q .
\\\__,,_//
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Polymerized LTB condition

4
Polymerized LTB condition ga (K., Ky, E®): (E®) = ga(1 + £@)E?, (Ks)' = ga(1+ E(x)) K, <k
Ca; - 0
Decouples the EoMs: 2 (9o + AESmxho — hi) — h
4 EoMs of L5 oy = T2E = =M | Fa, (Bg B, 8uK gy 0aB)
{KI:Emaqu?!qu} = z x z
BB = Frue(Hy; BS, 0y, 0,E)

Compatible LTB condition exists if and only if no polymerization of K,
, 2E*9gegn  —4E®0g= f (K, E®) +3K¢f(1)(K¢:E$)
= E* 1-— = =0
ga = ga(E”), o 21 (K, B7) ong

with polymerized Hamiltonian

A () = B [_Ea:(élef(?)(qu,E“’) 5 f(l)(K¢,E$)) +h1((Ez’ )2 - 1) +2Ezh2(51’ )’] @

2GVE= E¢ Ex 2FE¢ E¢ 2E¢
Classical limit: f(l) — K;, f(2) — Kg,h1 = 1,ha — 1
LTB coordinates
(R
ga (1 +E(x))

Generalize early attempt in Bojowald, Harada, Tibrewala, 08, Bojowald, Reyes, Tibrewala, 09’

ds® = —dt® + dz® + R*dQ?
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Polymerized vacuum solution

Flat Minkowski spacetime is always a vacuum solution — Let’'s do not take it into account

Existence of vacuum solution C® = 0 «—= Conservation of the scalar Hamiltonian C'*
R —

&
[Hy, G2} ~ €,
Only possible when there is no polymerization of K, and

hi(E®) — 2E®8paho(E®) _ —4E®0ps (K4, E®) + 9k, f 1 (K4, E*)
hQ(EI) N Qf(z)(qu:EI)

= Cong¢

2B%0p=ga _, _ h1—2E"9pshs

Compatible LTB condition exists with
gAa ha

Hongguang Liu

Hamiltonian can be rewrite as ay , F := 27 G2 (z) conserved quantity

- )
OB T . sy

VIt @) 2Gga

(F + ha (63 (1 + E(z)) — 1)) |With {Ke, E"} = 2Gga

Decoupled dynamics generated by C2®
\/ﬁ p y g \

* Modified Friedmann eq: % = F(M(x), R), integration leads to R = Ry, (t — B(x))

* Unique stationary solution for given integration constant M (z) = m = const at vacuum.

® Schwarzschild coordinates: " Rt F )
ds? = —(1 — G(r)2)dt2 + dr? + r2dQ2 with g := — =+ = 2\ 0P
(=9 = em?) NG
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Extended mimetic gravity: underlying covariant Lagrangian

&

Hongguang Liu
Chamseddine, Mukhanov; 10
Takahashi, Kobayashi, 17’
Ben Achour, Noui, HL, 17

Langlois, Mancarella, Noui, Vernizzi 18’

Han i

i 1 A '

Slguv, ¢, Al = 857G /| , d'zv/—g lé RW + Ly(x1,x2) + §(VM¢V”<P+ 1)N[
4

x1 =Up, x2=0ue", ep=Vue, ou =V, Vy,p

L contains the higher derivative couplings. L, — 0 recovers classical GR with non-rotating dust
Extra gauge symmetry s.t. the theory propagates only 2 + 1 d.o.f.

EoM: Modified Einstein Eq: G2, := G — TS, = —Apuev

scalar field ¢ is a natural observer (clock field) that defines the internal time = = : temporal gauge
fixingwith v =1
Foliation with constant ¢ slices: x; = K, x2 = —K;; K. The Hamiltonian analysis gives the effective

physical Hamiltonian C'® with fi~scheme polymerization (holonomy corrections)
L, can be reconstructed from given Hamiltonian with fi-scheme polymerization, e.g. Ben Achour, Noui, HL, 17, Han, KL, 22°

temporal gauge fixing solves A\ with /4 \ = C?. ) plays the role of dust energy density in the
polymerized theory.

Polymerized vacuum solution with A = 0 = G2

jours MGE necessarily Ricci flat
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Brief summary

!

Hongguang Liu

[ ]

A — B: Mimetic theory contains
fi-polymerization of K, e.g. Han 1L, 22°

[ ]

B — A: Inverse triad corrections +
polymerization of K
® Polymerized LTB condition ga (E™)

C" Inverse triad corrections + polymerization
of K, with constraint
® Polymerized LTB condition ga (E™) and
polymerized vacuum solution:
® polymerized vacuum solution gives the most
general form of Schwarzschild like metric

Polymer theories AN B: p-polymerization of K,

® Covariant Mimetic Lagrangian
® Polymerized LTB condition ga

A: Covariant Mimetic Gravity Lagrangian B : :
; y ) g 9 ANC: fi-polymerization of K, with constraint
B: Polymerized LTB condition g o .
ovariant Mimetic Lagrangian

C: Polymerized vacuum solution * Classical LTB condition g = 1 and polymerized
vacuum solution
® polymerized vacuum solution gives the
Bardeen-like metric

[ ]

Pirsa: 23110084 Page 17/29



Pirsa: 23110084

Polymer theoryin ANC

Polymerization of K4 with ji-scheme + Polymerized vacuum: (Can be derived from extended mime

Compatible LTB condition is classical LTB condition ga =1 &F = 2f®, y = (B%)3 = R®
s ~
o, BO e R (F(b) + g(f))
1+ 8(3:) 2G w3

- 4+ = 22| =) | B

Hongguang Liu

o= ~ e B*VER [4R. fO 0) +1O0) + a4

K
with 4@ ) — FD’ ) = 26 (b) , b = —2_ f-scheme
f %) FN(b) F i) e

C* conserved quantity. Decoup_led dynamics generated by C2 with {b,v} =3G
2GM(z) E(x)
R3  R?

- : : 1
Modified Friedmann equation: % = 5F’ ((F)l ( )) —> reconstruction

Integration: t — S(x) f L
tt—Bz) =
Ro f(®) ((F)—l (mﬂ’{;(m) - STF;”)))

Birkhoff-like theorem at polymerized vaccum M (z) = m = const in marginally bound case £ = 0
Polymerized vacuum solution in Schwarzschild coordinates: G(r) = gF’ ((F)*l (T—S))

;!
o
: . —1f%ey Ts T
Reconstruction from G(r): (F) (r3) = /d, (T3) 2600
Bardeen-like solution: ds* = —(1 — G(r)?)dt* + ﬁdr2 + r2dQ?®
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Polymer theoryin ANC

Polymerization of K with ji-scheme + Polymerized vacuum: (Can be derived from extended mime S8

ﬁ: —%E‘f’\/ﬁ[ﬂﬁf@)(b) +f“)£32+ ]

Ky

with 47 (b) — f ' (b) = 2@ (b) , b = fi-scheme

Compatible LTB condition is classical LTB conditioEéA =1 ; & F = 2§, v = (E®)2 = R®
8, CA &

cA=__BY  with A= (F(b) -

(:.:)) 3:-
/It E(@) % \— 3 - '\'\B)
* C” conserved quantity. Decoup_led dynamics generated by b,v} = 3G p(b)": ]D:'

* Modified Friedmann equation: L = 1F’ ((F)l (QGM(I) e
R 2 R3 R2

) —> reconstruction

Ceoctien,

ar
® |ntegration: t — B(z) = f
v 77 (07 (256 )

* Birkhoff-like theorem at polymerized vaccum M (z) = m = const in marginally bound case £ = 0

* Polymerized vacuum solution in Schwarzschild cogrdinates: G(r) = gF’ ((F)*l (:—;))
; . LBy Ts T
¢ Reconstruction from G(r): (F) (r3) = /d, (?"3) 2600
Bardeen-like solution: ds* = —(1 — G(r)?)dt* + ﬁdr2 + r2dQ?®
— - ' 74
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Examples:Bardeen and Hayward metric

Bardeen-like solution from extend Mimetic gravity: ds* = —(1 — G(r)?)dt* +

ild: 2_Ts o /_
Schwarzschild:  Gg(r)? = = = 260~ 2 v
- sl ~<3>

* Integration gives F'(b) = b* with marginally bound solution R(t,z) = (2GM (x))
d

)
Hongguang Liu \_ s

1 2 2 102
7(1—9(1‘)2)(1? + r=dQ2

o=
b

(50 -1)
3

BardeenBH: G(r)? = i — g - % + (Ts)g’ 4 v -

. e = (TQ i a%m%)% Qg('r‘) = 5 o = Bardeen, 68

% § 4 ,r3\3\ . .
* Integration gives '~ = 5 [} B N R with marginally bound solution:

2

1 [r3
Ha Wal‘d BH: L > E = - — 2 \/ ayward, 05
Y r3 + a’?m 20(r) 2V », e ——
_2 h(2 2rs
* |ntegration gives F—! iyt RN ) , an=sinh™! i
4o r3
2GM 2 2
* Marginally bound solution: R(t,z) = Gj—g&:)a, t — B(z) = —a(—an + cothan)
sinh“ an 3
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Examples: LQC as decoupled theory

. 2 Hongguang Liu
Polymerization on the decoupled sector: F(b) = M
8
A . 2
X = b
o L - L C— cﬁ=i(sm (Qa)+gf))
" V1+E(x) 2G o v2
Polymerization in spherically symmetric spacetime: recovers Hamiltonian in [Tibrewala, 12
o _E°VE [%sz (aK¢) L RE"K: — B°Ky) (mm) +R3]
2G « VvV ET avV E*E? v B
Effective EoMs in Aerial gauge E® = ?“2: recovers EoMs in [Husain, Kelly, Santacruz, Wilson-Ewing 21°,22’
E ™ 1 alk( jl &
E? = g — | —2 " 7 BKi—-— .. [ r3 sin? ghE._ = g
i it ( v ) 20 1 Sar 2ra? (r - T 2y i 2E$2

Covariant Lagrangian and polymerized junction condition:

* |srael junction condition: Solution to the Einstein equation in the weak sense: allow discontinuities
¢ Modified Einstein Eq: Modified junction condition

* We can derive polymerized junction condition in corresponding Mimetic theory For arbitrary coordinates
* Gluing along geodesics is still allowed, modifications arise when there is no trivial surface-energy tensor

Page 21/29
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Standard LQC as decoupled theory

Hongguang Liu

3
C(,2 V2

R? o A 2 (kp &
ﬁ(m)_(?_'_ﬁ) (1—& (F_i_ﬁ (x)
Modified LQC Friedmann equati‘wgh_m

Effective equations of motion C2 = % (

) £60)

General solution in marginally bound case £.= 0
9 - 4 ® General mass function M (z) = C*(z):
Rt} = (2GM(I) (4(8(9:) —1)? + cx2)) inhomogeneous%t collapse allowed
Q B, ® Vacuum solution: M (z) = m, B(z) = =
ds? = —dr? + (8, R)? dz? + R%dQ? * classical solution: o« — 0
= —d7? + (dr — 8, Rdt)® + r2dQ? ® Metric degenerate at shell-crossing 8, R = 0
g 2 g . 2 8
Null expansion 64 = £ (R:I: 1) horizon at R = +1, critical mass M, = o
R 3v3G

* When M(z) > M., inner horizons 3(x) — t = +h_ () and outer horizons 3(x:) — t = +h_ (z) exist.
® Trapped: [h—, h4], anti-trapped: [—h4, —h_], untrapped otherwise.

Oppenheimer-Snyder (OS) dust collapse x, position of dust shell

M(z) =2G [,TSED@(:[:S — )+ 22 EoO(z — ar:&)] : B(x) = (v — x,) O(x — x)

Pirsa: 23110084 Page 22/29



Standard LQC as decoupled theory: Polymerized vacuum

similar solution in [Fazzini, Rovelli, Soltani, 23’ 3
Perimeter-A

1
Vacuum solution:  R(z,7) = R(z) = (rs (gz;,+ a2)) U, zi=x— symmetric function in z

Bouncing solution with minimal radius Ry = (rsch)% atz =10

Dust worldlines z = const pass bouncing surface z = 0 at different time 7 and do not intersect
Metric degenerate at z = 0 in LTB coordinates: ds? = —d72 + (8, R)? dz? + R2dQ?

E? = 2RR’' thus signed volume E®v/E= changes sign after the bounce

Bounded curvature invariants: no shell crossing singularity

960 576 (160a* — 96022 4 272%)

pvpa

R“VPUR

- (4a2 + 922)%’ (402 + 922)*

® Polymerized vacuum: Ricci scalar R # 0

Solution in Schwarzschild coordinate: Next-to-leading order
expansion of

1 Ts o’r Hayward metric
ds? = —A(r)dt2 + ——dr? +72d02, A(r)=1-_2(1- 228 .
A(r) r
Coordinate transformation only well-defined for z > Oorz < 0s.t. r > Ry
Jacobian of coordinate transformation for z > 0 and =z < 0 has different signs

?”3

* Solution can be obtained directly from solving Mimetic gravity Einstein equations in Schwarzschild
coordinate.

* The lower-bound r > Ry is encoded in the mimetic condition where (9,¢)* = 1 —
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Standard LQC as decoupled theory: Polymerized vacuum

Hongguang Liu

. 3
Vacuum solution:  R(z,7) = R(z) = (rs (222 + az)) , Zi=L—T symmetric function in z

® Bouncing solution with minimal radius Ry = (7‘3[12)% atz =10
* Dust worldlines = = const pass bouncing surface z = 0 at different time 7 and do not intersect
* Metric degenerate at z = 0 in LTB coordinates: ds? = —d7r2 + (9. R)? dz? + R%2dQ?

Similar result in [Munch, 21" with junction condition
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Standard LQC as decoupled theory: Polymerized vacuum

Hongguang Liu

. 3
Vacuum solution:  R(z,7) = R(z) = (frs (%z2 + a2)) , BI=E—T symmetric Function in z

® Bouncing solution with minimal radius Ry = (rsoﬁ)% akz =10
® Dust worldlines x = const pass bouncing surface z = 0 at different time 7 and do not intersect
* Metric degenerate at z = 0 in LTB coordinates: ds? = —d7r2 + (9. R)? dz? + R%2dQ?

ip

ip L

model using Isreal junction condition with LQC
[Lewandowski, Ma, Yang,Zhang, 22’
[Han, Rovelli, Soltani, 23’

[Fazzini, Rovelli, Soltani, 23"
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Standard LQC as decoupled theory: Polymerized vacuum

Hongguang Liu

. 3
Vacuum solution:  R(z,7) = R(z) = (frs (%z2 + a2)) , BI=E—T symmetric Function in z

) R/(z)2
* (t,z) — (T, z) coordinates: ds> = —(1 — (R'(z))?)dr? + _REF s + R(2)%dQ?
1 - (R'(2))?
* (7, z) to Schwarzschild (7, r): 2-to-1 correspondence as » = R(z) symmetricin z
T r t
4 3.0
3 Wk 25
rl’ : "k‘
2 : : Eal 20 e
.- I : 4 Theel sgbe=ee” ’ '- 5 _,f\.
| i f | e '
- e i W - 10
z
0.2 !
05
-1
05 10 15 20 25 30 "
(a) x = 1and z = 3/2 curves plot in (b) = 1and x = 3/2 curves plotin (¢) x = 1and = = 3/2 curves plotin
(7, r) coordinates. They will intersect each (7, z) coordinates. Blue lines will not (t, z) coordinates. Blue lines will not
other. Blue and orange line coincide in this intersect with blue lines but will intersect  intersect with blue lines but will intersect
case. with orange lines. with orange lines.

* Intersection of worldlines implies non-continuity of the mimetic field ¢ (clock Field)
* Result from junction condition consistents with inital value problem in decoupled coordinates
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Summary

Hongguang Liu

Spherically symmetric polymer models

Covariance, polymerized LTB condition, polymerized vacuum solution, and reconstruction

* We perform a general analysis to spherically symmetric polymer models

° A subclaIs.s of the model corresponds to extended mimetic gravity and admits polymerized
LTB condition and polymerized vacuum solution:
® Completely decoupled cosmological dynamics in LTB sector:
* (inhomogeneous) dust collapse as decoupled ODE
* consistent reduced phase space quantization of cosmology in LTB sector and reconstruction

® Birkhoff-like theorem with general Schwarzschild-like solution
* Allow reconstruction from general Schwarzschild-like solution or cosmological dynamics in LTB
sector

* Examples

* Reconstruction from Bardeen-like metrics:
Bardeen and Hayward metric
®* LQC as decoupled model: new insights into spacetime strcuture and the presence of shocks
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Standard LQC as decoupled theory: Polymerized vacuum

Hongguang Liu

. 3
Vacuum solution:  R(z,7) = R(z) = (frs (%zz + az)) , ZI=E—T symmetric function in z

) R'(2)2
* (t,z) — (T, z) coordinates: ds> = —(1 — (R'(2))?)dr? + _BE + R(2)%d0?
1 - (R'(2))?
* (7, z) to Schwarzschild (7, r): 2-to-1 correspondence as r = R(z) symmetricin z
T T t
4 3.0
3 25
2 ____.-- ."'".__‘ ] . : 20
<”” ' : =y [ T : 15
S g e : : PO, — :
: B ? e T 1.0
- % z
05
-1
085 10 15 20 25 30 X
(a) x = 1and z = 3/2 curves plot in (b) x = 1and « = 3/2 curves plotin (¢) x = 1andx = 3/2 curves plotin
(7, r) coordinates. They will intersect each (7, z) coordinates. Blue lines will not (t, z) coordinates. Blue lines will not
other. Blue and orange line coincide in this intersect with blue lines but will intersect  intersect with blue lines but will intersect
case. with orange lines. with orange lines.

* Intersection of worldlines implies non-continuity of the mimetic field ¢ (clock Field)
¢ Result from junction condition consistents with inital value problem in decoupled coordinates
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Outlook

Pirsa: 23110084

¢ Within the model

® Gravitational wave memory effect using corresponding extended mimetic Lagrangian

* Beyond the model

Hongguang Liu

Relation with stationaryisolutions in Kantowski-Saches model of stationary BH interior, e.g. AOS
model
Axially symmetric model and its solution, generalized Newman-Janis algorithm?
Generalized Vaidya solution —- BH evaporation:
® Possible to solve directly in the mimetic Lagrangian with a null dust energy-momentum tensor in the
generalized Vaidya coordinate.
® Send m directly to m(r) do not solve the modified Einstein equation
® Conformal scalar field similar to the mimetic CGHS.
4d mimetic Lagrangian gives new insight into perturbations

® Cosmological perturbation
® BH perturbation and quasi-normal modes

Connection with other regular BH and dust collapse spacetimes

Covariant Lagrangian beyond mimetic class, e.g. in general degenerate higher-order scalar-tensor

theories
Polymerization of C,.: deparametrization of z needed

Thank you
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