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Abstract: It is well-known that one-dimensional systems at finite temperature, such as the classical Ising model, cannot spontaneously break a
discrete symmetry due to the proliferation of domain walls. The validity of this statement rests on a few assumptions, including the spatial locality
of interactions. In a situation where a one-dimensional system exists as a defect in a critical, higher-dimensional bulk system, the coupling between
defect and bulk can induce an effective long-range interaction on the defect. It is thus natural to ask if long-range order can be stabilized on a defect
in acritical bulk, which amounts to asking whether domain walls on the defect are relevant or not in the renormalization group sense. | will explore
this question in the context of Ising conformal field theory in two and higher dimensions in the presence of a localized symmetry-breaking field.
With both perturbative techniques and numerical conformal bootstrap, | will provide evidence that indeed the defect domain wall must be relevant
when 2 &It; d &It; 4. For the bootstrap calculations, it is essential to include "endpoint” primary fields of the defect, which lead to a rigorous and
powerful way to input bulk data. | will additionally give tight estimates of a number of other quantities, including scaling dimensions of defect
operators and the defect entropy, and | will conclude with a discussion of future directions.

Zoom link https://pitp.zoom.us/j/92671628591?pwd=WjNma3V EV2M4T011dFILMzM2ZUJUT09
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Overview

1. Motivation & Setupggm

2. Pinning field defect in 2 < D <4
3. Bootstrap approach

4. Conclusions
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Defects and phases of matter

Defects come in many forms

H = Hé I Hdefect

e Kondo problem?, impurities®
e Modified couplings
e Symmetry defects (background flux)©

?Kondo 1964:; Wilson 1975.

bSachdev, Buragohain, Vojta 2000.

“Thorngren, Else 2018; Barkeshli, Bonderson, Cheng, Wang
2019.

Want to understand long-distance properties of defects
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Long-range order on a line?

Classical one-dimensional systems with local interactions do not typically order

e Ferromagnetic Ising: domain walls thermodynamically favored

PP E S — % b ey

e Consider higher-dimensional critical Ising model with modified bond strength along a line
H = —J*Zs,-sj — K Z 5i5;
(ij) (el

Is there a phase where spins spontaneously order along L?
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Defects in field theory

Suppose Hp tuned to a critical point, D = d + 1 spacetime dimensions
e Assume conformal field theory (CFT) description

e Want to model the combined bulk + defect system
I
Focus on line defects

e In the IR, can flow to conformal defect
preserving at most

SL(2,R) x SO(d)

i.e. defect CFT (dCFT)?

e Modified correlation functions, new
critical exponents

Co A 1

(O(x)) (é(}’)o(z)) — m

N

?Billo, Gongalves, Lauria, Meineri 2016.
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Defect Renormalization Group

Simple case: perturb by relevant bulk operator, starting from no defect

SIZSCFT—I—h/dTO(f,T) Ap <1

Such RG flows constrained by monotonicity theorem?

Defect g-theorem
The g-function defined by

log g = log Zyefect+bulk / Zbulk

obeys guyy > gir at the fixed points under defect RG flow.

e In D =2, follows from Affleck-Ludwig g-theorem from boundary conformal field theory
e Trivial defect has g =1

1Zamolodchikov 1986: Casini, Landea, Torroba 2016; Friedan, Konechny 2004; Kobayashi, Nishioka, Sato,
Watanabe 2019; Cuomo, Komargodski, Raviv-Moshe 2022.
6 /37
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Defect Hilbert spaces

Consider space as S9, place conformal defects D?, DP at antipodal points

Rd—l—l

DG’;

©*(0)

7

Db

%)sa € Hg

e Quantizing with different defect types gives defect Hilbert spaces #3

o »?’ called defect-changing operators®

'Kim, Kiryu, Komatsu, Nishimura 2017.
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Symmetry transformations of line defects

If we have global 0-form symmetry G, line type may transform under G?!

I

lKitaev, Kong 2012; Bartsch, Bullimore, Grigoletto 2023; Bhardwaj, Schafer-Nameki 2023.
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Explicit and spontaneous defect symmetry breaking

Imagine a Z5 long-range ordered phase on a defect. As a conformal defect D%+
e 7o symmetric

e Expect two topological local operators corresponding to each symmetry-broken vacuum
Iy, -

where [, — [_ is an order parameter with LRO
Can consider local and domain wall perturbations

Operator spectrum described by
HEL=HIOoHI @ H O HT

e Can separately study each H, i.e. in the context of explicit symmetry breaking

e Sometimes domain walls forbidden in quantum problems: can be related to SPT physics?

Wiy, Shapourian, Vishwanath, M. A. Metlitski 2021; Thorngren, Vishwanath, Verresen 2021; Prembabu,
Thorngren, Verresen 2022.
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Pinning-field defect operators

In this talk, will consider various species of operators
. Bulk Defect

==
@ O:tj:

=i

Endpoint Domain wall

o= =l

F
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Want to study the pinning field defect for 2 < D < 4
e Long history of existing literature (analytic!, M.C.2, bootstrap?, fuzzy sphere?)

e Want to advance bootstrap study of line defects

e Previous works: bulk-to-defect, defect crossing5
O}_ 02

Ol

O

E 0.0, & O 60,

A

@)

e Include defect-changing operators, do standard 4-point bootstrap

LAllais, Sachdev 2014; Cuomo, Komargodski, Mezei 2022,%Parisen Toldin, Assaad, Wessel 2017; Allais
2014,3Gimenez-Grau, Lauria, Liendo, Vliet 2022,*Hu, He, W. Zhu 2023
>Gaiotto, Mazac, Miguel F Paulos 2014; Padayasi, Krishnan, M. Metlitski, Gruzberg, Meineri 2022; Liendo,
Rastelli, Rees 2013; Behan, Di Pietro, Lauria, Rees 2020
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2. Pinning field defect in 2 < D <4
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Pinning field defect in D = 2

All conformal defects in D = 2 Ising CFT known'

e Related to conformal boundary conditions of orbifold free boson
I

Pinning field defect is “separating” in D = 2

i.e. equivalent to cutting and imposing “fixed” conformal boundary conditions

10Oshikawa, Affleck 1996.
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Pinning field defect in D = 2

Use boundary CFT

e Fixed Cardy states in Ising
I

1
£) = 5 (10) + le) £2440)

e Pinning field defect associated with tensor product Cardy state in Ising®?
1 ®2
£, £) = = (100 + e =240

Read off defect entropy g = 2

2 =1(0,0|%,£) =
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Pinning field defect in D = 2

Defect partition function

Zr. ()= ) _\

Endpoint partition function

Zos(T)= :;‘\
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Pinning field defect in D = 2

Operator spectra:

e Defect: Descendants of identity operator
I

AFf=0,24n neN
e Domain walls: Descendants of A = 1 primary
ArF=14+n neN

e Endpoints

1

A?T’,li:n—l_:))z HEN

R ]
de =5 e =
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Pinning field in D =4 — ¢
Study the pinning field defect at Wilson-Fisher fixed point in D = 4 — € (note Ay = =
1 Ao
Swe = [ dox [S002 + 304

5M=/wmmama

We can allow discontinuities in h(7) to create endpoint, domain wall, etc.
In terms of appropriate dimensionless couplings, non-trivial fixed point appearsin D < 4

(47T)2_3+816 + O(¢€) h*—9—|—66—|—0(6)

¢ renormalizes differently along the defect

41 ,
A =1+e— Eez +0() Padé AL (D=3)~155+0.14
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Pinning field in D =4 — ¢

Can attempt to estimate Agy and A,

Both receive large corrections at O(e)

Aoy = 0.113986(1 + 1.03454e + O(e2)) = 0.231909

A._ =0.455945(1 + 1.58261c + O(?)) = 1.17753

At Gaussian fixed point in d = 4, h is exactly marginal and A._ may be tuned continuously

18 /37
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Survey of defect CFT dataind =3

Collect various estimates of dCFT data

Analytic MC Fuzzy sphere

1.6040.05°
1.55 +0.141 1.5240.062 1.63 +0.06*

1.4+0.033
1.17753 i Unpublished: ~0.837°

0.231909° | 0.0935 +0.00353 | Unpublished: ~0.1075°
0.5697831 ? Unpublished: ~0.6055°

Bootstrap?! Let’s find out!

1Cuomo, Komargodski, Mezei 2022.
2Parisen Toldin, Assaad, Wessel 2017.
*Allais 2014.

*Hu, He, W. Zhu 2023.

®Allais, Sachdev 2014.

®Zou, Zhou, Gaiotto, He 2023.
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3. Bootstrap approach
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Symmetries and defects

For the defect problem in D = 3
e Consider straight line defect along 7 axis

e Continuous spacetime symmetry: SL(2,R) x SO(2),1
Generators : D, P, K, My,
e Discrete spacetime symmetry?:
Zy :(1,x,y) = (—7,x,y)

e Discrete internal symmetry: lIsing Z,

These symmetries lead to various selection rules

!Billd, Gongalves, Lauria, Meineri 2016.
2Gaiotto, Mazac, Miguel F Paulos 2014.
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Symmetries and defects

OPE of defect-changing operators?:

ab

"1 /\a_bc ’
- § : P3P1$2
P35

8

For primaries, SL(2, R) symmetry fixes form of OPE

o0
A7) % 2°(0) = D N 0T A T D B 0 0
¥3 n=0

!Runkel 2000.
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Symmetries and defects

Important aside: take care of operator normalization
e When the output of OPE contains only defect operators, identity operator may appear
I

aba

Aol
P (7)p"(0) = SE +

e /@ represents infinite line defect with no local operator insertions, in general
82 = (L) #1
e SL(2,R) symmetry can cyclically permute
(?(1)p%(0)) = (p*()p™(0)) = &A% = 8 Agi

e Can achieve unit-normalization by choosing )\;fj, =
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Symmetries and defects

For three-point functions

| Abca
ab be ca . P1$23

(‘101 (Tl)(p? (T2)(’03 (T3)> N TA<P19029937-A901¢939027-A‘*°2‘93%01 A

12 13 23

There is again a constraint from cyclicity

bca __ycab __ yabc
)\kplﬂpzkps o )\902433901 o )‘sosnmm

Cross-ratio dependent piece of four-point function
bca cda

bcd . ipiO" Oprp;  Boie; Do,
G;f‘:gjtpksar(x) = (Oca‘oca> ngJ : (X)

C’_)ca
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Symmetries and defects

Imposing lIsing Zo symmetry '
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Symmetries and defects

Imposing Ising Zy symmetry 1

==

SOI
0+

2

O.
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Selection rules

Will need more details about OPE content of bulk and endpoint operators
e Leading endpoint (SO(2) singlet): %=
e Leading Z; even scalar: Ie
e Leading Z, odd scalar: o

e Previous studies used just displacement operator, including makes negligible difference

Z% and SO(2) further constrain OPE
e Defect SO(2), spin: s
o 73 parity: pr
e Bulk SO(3) spin: ¢
Bulk operators of SO(3) spin ¢, s = 0 and parity p have p, = £+ p mod 2

Use as much bulk data as possible’

1Simmons-Duffin 2017; Su 2022: Wei Zhu, Han, Huffman, Hofmann, He 2023.
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Selection rules

First consider endpoints fusing to bulk SL(2, R) primary operators

I
R ()
o0 o
O must be
Z» even or odd
pr =20
s=10
O not necessarily a bulk primary

Need to include all bulk descendants consistent with other symmetries
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Selection rules

Next consider endpoints — (gefect operators/domain walls) or endpoint + bulk — endpoint

S01—0 Spsz Oiﬂ: apio (,OOZF O:Fi
—e —

<G ¢ —=~0

0+ O:I:O

€/0 Y
@ 9
O+, 0T, O%* must be
o p; = 0 (except for O%+)

e s—=20

Pirsa: 23110068 Page 30/38



Page 30 of 37

Selection rules

Finally, consider all bulk operators
€/0 O
" o ®

O X0, €EXE

e 7» even e 75 odd
e p, =0 o p,=0,1
e s=0 e s=0
e We include known OPE coefficients: Ayge, Aceer Aoo Ty Aee T
e For scalar bulk primaries, incoporate OPE coefficient of level-2 bulk descendant

32) _ S
c N(2A3—|—1

Gyt a,?) O
2(A+ A)(A — Ar)

Ay = — A
(@) 2A + 1 120
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Crossing symmetry

Impose crossing symmetry and obtain numerical bootstrap bounds!

.ﬁo:l 0+
" .

c/oe

€/Te €/ae

Use standard semidefinite programming techniques (SDPB?)

'Rattazzi, V. S. Rychkov, Tonni, Vichi 2008.
2E|-Showk, Miguel F. Paulos, Poland, S. Rychkov, Simmons-Duffin, Vichi 2012; Simmons-Duffin 2015.

31/37
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Universal Bound on defect g-function

Assume bulk 3d Ising, no assumptions about defect other than stability to local perturbations

e 0.0585 < Ag. < 0.1195
e 0.601 < g < 0.894
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Universal bound on lightest defect operator

o Ay, <1723
e Saturates near (Ag4+, Ay4) = (0.1074,0.614)!
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Universal bound on lightest domain wall

0.10
A0+

e Saturates near (Ag;, A, ) = (0.1076, 0.832)!
e Relevant if Ag. < 0.1366!
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Universal bound on subleading endpoint
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More aggressive g bound

Assume gaps Ay, > 15 A,_>0.7

0608

0.104 0.105 0.106 0.107 0.108 0.109 0.110
A0+

e 0.105 < Ag; < 0.10942
e 0.6018 < g < 0.6068
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Conclusions

Summary
e We can obtain accurate defect CFT data by incorporating endpoints
e Found excellent agreement with preliminary fuzzy sphere predictions!
To-Do
e Careful spectrum analysis
e Impose gaps above A, A _
Future directions:
e Spin impurities
e Wilson lines
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