Speakers: Ryan Lanzetta

Series: Quantum Matter
Date: November 16, 2023-11:00 AM
URL: https://pirsa.org/23110068
Abstract: It is well-known that one-dimensional systems at finite temperature, such as the classical Ising model, cannot spontaneously break a discrete symmetry due to the proliferation of domain walls. The validity of this statement rests on a few assumptions, including the spatial locality of interactions. In a situation where a one-dimensional system exists as a defect in a critical, higher-dimensional bulk system, the coupling between defect and bulk can induce an effective long-range interaction on the defect. It is thus natural to ask if long-range order can be stabilized on a defect in a critical bulk, which amounts to asking whether domain walls on the defect are relevant or not in the renormalization group sense. I will explore this question in the context of Ising conformal field theory in two and higher dimensions in the presence of a localized symmetry-breaking field. With both perturbative techniques and numerical conformal bootstrap, I will provide evidence that indeed the defect domain wall must be relevant when $2 \& \mathrm{lt} ; \mathrm{d} \& \mathrm{lt} ; 4$. For the bootstrap calculations, it is essential to include "endpoint" primary fields of the defect, which lead to a rigorous and powerful way to input bulk data. I will additionally give tight estimates of a number of other quantities, including scaling dimensions of defect operators and the defect entropy, and I will conclude with a discussion of future directions.

[^0]
Long-range Order on Line Defects in Ising Conformal Field Theories
 Work in progress w/ Shang Liu \& Max Metlitski

Ryan Lanzetta

University of Washington

November 16, 2023

Overview

1. Motivation \& Setup
2. Pinning field defect in $2 \leq D \leq 4$
3. Bootstrap approach
4. Conclusions

Defects and phases of matter

Defects come in many forms

$$
H=H_{0}^{\mathrm{I}}+H_{\text {defect }}
$$

- Kondo problem ${ }^{a}$, impurities b
- Modified couplings
- Symmetry defects (background flux) ${ }^{c}$

[^1] 2019.

Want to understand long-distance properties of defects

Long-range order on a line?

Classical one-dimensional systiems with local interactions do not typically order

- Ferromagnetic Ising: domain walls thermodynamically favored

$$
\hat{\phi} \hat{\phi} \hat{\phi} \phi \hat{\phi} \longrightarrow \hat{\phi} \hat{\phi} \hat{\phi} \mid \phi \phi \phi
$$

- Consider higher-dimensional critical Ising model with modified bond strength along a line

$$
H=-J_{*} \sum_{\langle i j\rangle} s_{i} s_{j}-K \sum_{\langle i j\rangle \in L} s_{i} s_{j}
$$

Is there a phase where spins spontaneously order along L ?

Defects in field theory

Suppose H_{0} tuned to a critical point, $D=d+1$ spacetime dimensions

- Assume conformal field theory (CFT) description
- Want to model the combined bulk + defect system

Focus on line defects

- In the IR, can flow to conformal defect preserving at most

$$
S L(2, \mathbb{R}) \times S O(d)
$$

i.e. defect CFT (dCFT) ${ }^{a}$

- Modified correlation functions, new critical exponents

$$
\langle\mathcal{O}(x)\rangle=\frac{C_{\mathcal{O}}}{\left|x_{\perp}\right|^{\Delta}}\langle\hat{\mathcal{O}}(y) \hat{\mathcal{O}}(z)\rangle=\frac{1}{|y-z|^{2 \hat{\Delta}}}
$$

Defect Renormalization Group

Simple case: perturb by relevant bulk operator, starting from no defect

$$
S_{\mathrm{I}}=S_{C F T}+h \int d \tau \mathcal{O}(\vec{x}, \tau) \quad \Delta_{\mathcal{O}}<1
$$

Such RG flows constrained by monotonicity theorem ${ }^{1}$

Defect g-theorem

The g-function defined by

$$
\log g \equiv \log Z_{\text {defect }+ \text { bulk }} / Z_{\text {bulk }}
$$

obeys $g_{U V}>g_{I R}$ at the fixed points under defect RG flow.

- In $D=2$, follows from Affleck-Ludwig g-theorem from boundary conformal field theory
- Trivial defect has $g=1$
${ }^{1}$ Zamolodchikov 1986; Casini, Landea, Torroba 2016; Friedan, Konechny 2004; Kobayashi, Nishioka, Sato, Watanabe 2019; Cuomo, Komargodski, Raviv-Moshe 2022.

Defect Hilbert spaces

Consider space as S^{d}, place conformal defects $\mathcal{D}^{a}, \mathcal{D}^{b}$ at antipodal points

- Quantizing with different defect types gives defect Hilbert spaces \mathcal{H}_{b}^{a}
- $\varphi^{a b}$ called defect-changing operators ${ }^{1}$
${ }^{1}$ Kim, Kiryu, Komatsu, Nishimura 2017.

Symmetry transformations of line defects

If we have global 0 -form symmetry G, line type may transform under G^{1}

I

${ }^{1}$ Kitaev, Kong 2012; Bartsch, Bullimore, Grigoletto 2023; Bhardwaj, Schafer-Nameki 2023.

Explicit and spontaneous defect symmetry breaking

Imagine a \mathbb{Z}_{2} long-range ordered phase on a defect. As a conformal defect $\mathcal{D}^{s p \pm}$

- \mathbb{Z}_{2} symmetric
- Expect two topological local operators corresponding to each symmetry-broken vacuum

$$
I_{+}, I_{-}
$$

where $I_{+}-I_{-}$is an order parameter with LRO

- Can consider local and domain wall perturbations
- Operator spectrum described by

$$
\mathcal{H}_{s p \pm}^{s p \pm}=\mathcal{H}_{+}^{+} \oplus \mathcal{H}_{-}^{+} \oplus \mathcal{H}_{+}^{-} \oplus \mathcal{H}_{-}^{-}
$$

- Can separately study each \mathcal{H}_{b}^{a}, i.e. in the context of explicit symmetry breaking
- Sometimes domain walls forbidden in quantum problems: can be related to SPT physics ${ }^{1}$
${ }^{1}$ Liu, Shapourian, Vishwanath, M. A. Metlitski 2021; Thorngren, Vishwanath, Verresen 2021; Prembabu, Thorngren, Verresen 2022.

Pinning-field defect operators

In this talk, will consider various species of operators

Goals

Want to study the pinning field defect for $2 \leq D \leq 4$

- Long history of existing literature (analytic ${ }^{1}$, M.C. ${ }^{2}$, bootstrap ${ }^{3}$, fuzzy sphere ${ }^{4}$)
- Want to advance bootstrap study of line defects
- Previous works: bulk-to-defect, defect crossing ${ }^{5}$

$$
\begin{aligned}
& \begin{array}{ll}
\mathrm{O}_{1} & \mathrm{O}_{2}
\end{array} \\
& \sum_{\mathcal{O}}{ }^{0}=\sum_{\hat{\mathcal{O}}} \frac{\mathcal{O}_{1}}{\stackrel{\mathcal{O}_{2}}{\hat{\mathcal{O}}}} \underset{\hat{\mathcal{O}}}{ } \\
& \sum_{\hat{\mathcal{O}}} \xrightarrow{\hat{\mathcal{O}}_{1} \hat{\mathcal{O}}_{2} \hat{\mathcal{O}}} \xrightarrow{\hat{\mathcal{O}} \hat{\mathcal{O}}_{3} \hat{\mathcal{O}}_{4}}=\sum_{\hat{\mathcal{O}}} \xrightarrow{\hat{\mathcal{O}}_{4} \hat{\mathcal{O}}_{1} \hat{\mathcal{O}}} \xrightarrow{\hat{\mathcal{O}} \hat{\mathcal{O}}_{2} \hat{\mathcal{O}}_{3}}
\end{aligned}
$$

- Include defect-changing operators, do standard 4-point bootstrap

[^2]2. Pinning field defect in $2 \leq D \leq 4$

Pinning field defect in $D=2$

All conformal defects in $D=2$ Ising CFT known ${ }^{1}$

- Related to conformal boundary conditions of orbifold free boson I
Pinning field defect is "separating" in $D=2$

i.e. equivalent to cutting and imposing "fixed" conformal boundary conditions

[^3]
Pinning field defect in $D=2$

Use boundary CFT

- Fixed Cardy states in Ising
- Pinning field defect associated with tensor product Cardy state in Ising ${ }^{\otimes 2}$

Read off defect entropy $g=\frac{1}{2}$

$$
\frac{1}{2}=\langle 0,0 \mid \pm, \pm\rangle=\square \pm
$$

Pinning field defect in $D=2$

Defect partition function

$$
\mathrm{Z}_{ \pm \pm}(\tau) \stackrel{\overbrace{ \pm}}{\frac{\mathrm{L}}{\mathrm{~L}_{ \pm}}}=\left(\pm \mathrm{C}_{\mathrm{L} / 2} \quad \mathrm{I}_{ \pm}\right)^{2}=\left(\chi_{0}(\tau)\right)^{2}
$$

Domain wall partition function

$$
\mathrm{Z}_{\mp \pm}(\tau)={\stackrel{I_{ \pm}}{\mathrm{I}}}_{\mathrm{I}_{ \pm}}^{\mathrm{L}}=\left(\mp 0 \quad \mathrm{I}_{ \pm}\right)^{2}=\left(\chi_{1 / 2}(\tau)\right)^{2}
$$

Endpoint partition function

$$
\mathrm{Z}_{0 \pm}(\tau)=\mathrm{C}_{ \pm}^{\mathrm{L}}= \pm \mathrm{D}_{\mathrm{L}} \quad \pm=\chi_{0}(\tau)
$$

Pinning field defect in $D=2$

Operator spectra:

- Defect: Descendants of identity operator

$$
\Delta_{n}^{ \pm \pm}=0,2+n \quad n \in \mathbb{N}
$$

- Domain walls: Descendants of $\Delta=1$ primary

$$
\Delta_{n}^{ \pm, \mp}=1+n \quad n \in \mathbb{N}
$$

- Endpoints

$$
\begin{aligned}
\Delta_{n, 1}^{0, \pm} & =n+\frac{1}{32} & & n \in \mathbb{N} \\
\Delta_{n, 2} & =\frac{n}{2}+\frac{1}{32} & & 3 \leq n \in 2 \mathbb{N}+1
\end{aligned}
$$

Pinning field in $D=4-\epsilon$

Study the pinning field defect at Wilson-Fisher fixed point in $D=4-\epsilon\left(\right.$ note $\left.\Delta_{\phi}=\frac{D-2}{2}\right)$

$$
\begin{aligned}
S_{W F} & =\int d^{d} x\left[\frac{1}{2}(\partial \phi)^{2}+\frac{\lambda_{0}}{4!} \phi^{4}\right] \\
S_{d e f} & =\int d \tau h_{0}(\tau) \phi(0, \tau)
\end{aligned}
$$

We can allow discontinuities in $h(\tau)$ to create endpoint, domain wall, etc.
In terms of appropriate dimensionless couplings, non-trivial fixed point appears in $D<4$

$$
\frac{\lambda_{*}}{(4 \pi)^{2}}=\frac{\epsilon}{3}+\frac{17}{81} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \quad h_{*}^{2}=9+\epsilon \frac{73}{6}+\mathcal{O}\left(\epsilon^{2}\right)
$$

ϕ renormalizes differently along the defect

$$
\Delta_{++}=1+\epsilon-\frac{41}{27} \epsilon^{2}+\mathcal{O}\left(\epsilon^{3}\right) \quad \xrightarrow{\text { Padé }} \quad \Delta_{++}(D=3) \approx 1.55 \pm 0.14
$$

Pinning field in $D=4-\epsilon$

Can attempt to estimate Δ_{0+} and Δ_{+-}

Both receive large corrections at $\mathcal{O}(\epsilon)$

$$
\begin{array}{llll}
\Delta_{0+}=0.113986\left(1+1.03454 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right) & \stackrel{d \equiv 3}{=} & 0.231909 \\
\Delta_{+-}=0.455945\left(1+1.58261 \epsilon+\mathcal{O}\left(\epsilon^{2}\right)\right) & \stackrel{d \equiv 3}{=} & 1.17753
\end{array}
$$

At Gaussian fixed point in $d=4, h$ is exactly marginal and Δ_{+-}may be tuned continuously

Survey of defect CFT data in $d=3$

Collect various estimates of dCFT data

	Analytic	MC	Fuzzy sphere
Δ_{++}	1.55 ± 0.14^{1}	1.60 ± 0.05^{2}	1.52 ± 0.06^{2}
Δ_{+-}	1.17753	1.4 ± 0.03^{3}	1.63 ± 0.06^{4}
Δ_{0+}	0.231909^{5}	0.0935 ± 0.0035^{3}	Unpublished: $\sim 0.837^{6}$
g	0.569783^{1}	$?$	Unpublished: $\sim 0.1075^{6}$
		Unpublished: $\sim 0.6055^{6}$	

Bootstrap?! Let's find out!

[^4]3. Bootstrap approach

Symmetries and defects

For the defect problem in $D=3$

- Consider straight line defect along τ axis
- Continuous spacetime symmetry: $S L(2, \mathbb{R}) \times S O(2)_{\tau}{ }^{1}$

$$
\text { Generators : } D, P_{\tau}, K_{\tau}, M_{x y}
$$

- Discrete spacetime symmetry ${ }^{2}$:

$$
\mathbb{Z}_{2}^{\tau}:(\tau, x, y) \rightarrow(-\tau, x, y)
$$

- Discrete internal symmetry: Ising \mathbb{Z}_{2}

These symmetries lead to various selection rules

[^5]
Symmetries and defects

OPE of defect-changing operators ${ }^{1}$:

For primaries, $S L(2, \mathbb{R})$ symmetry fixes form of OPE

$$
\varphi_{1}^{a b}(\tau) \times \varphi_{2}^{b c}(0)=\sum_{\varphi_{3}} \lambda_{\bar{\varphi}_{3} \varphi_{1} \varphi_{2}}^{a b c} \tau^{\Delta_{\mathcal{O}}-\Delta_{\varphi_{1}}-\Delta_{\varphi_{2}}} \sum_{n=0}^{\infty} \tau^{n} \beta_{\bar{\varphi}_{3} \varphi_{1} \varphi_{2}}^{(n)} \varphi^{a c,(n)}(0)
$$

Symmetries and defects

Important aside: take care of operator normalization

- When the output of OPE contains only defect operators, identity operator may appear

$$
\varphi^{a b}(\tau) \varphi^{b a}(0)=\frac{\lambda_{\varphi \varphi l^{a b a}}^{a b a} I_{a}}{\tau^{2 \Delta}}+\ldots
$$

- I^{a} represents infinite line defect with no local operator insertions, in general

$$
g_{a}=\left\langle I_{a}\right\rangle \neq 1
$$

- $S L(2, \mathbb{R})$ symmetry can cyclically permute

$$
\left\langle\varphi^{a b}(\tau) \varphi^{b a}(0)\right\rangle=\left\langle\varphi^{b a}(\tau) \varphi^{a b}(0)\right\rangle \Longrightarrow g_{a} \lambda_{\varphi \varphi}^{a b a}=g_{b} \lambda_{\varphi \varphi}^{b a b}
$$

- Can achieve unit-normalization by choosing $\lambda_{\varphi \varphi}^{a b a}=g_{a}^{-1}$

Symmetries and defects

For three-point functions

$$
\left\langle\varphi_{1}^{a b}\left(\tau_{1}\right) \varphi_{2}^{b c}\left(\tau_{2}\right) \varphi_{3}^{c a}\left(\tau_{3}\right)\right\rangle \stackrel{\mathrm{I}}{=} \frac{\lambda_{\varphi_{1} \varphi_{2} \varphi_{3}}^{b c a}}{\tau_{12}^{\Delta_{\varphi_{1} \varphi_{2} \varphi_{3}} \tau_{13}^{\varphi_{1} \varphi_{3} \varphi_{2}}} \tau_{23}^{\Delta_{\varphi_{2} \varphi_{3} \varphi_{1}}}} \quad \Delta_{\varphi_{i} \varphi_{j} \varphi_{k}}=\Delta_{\varphi_{i}}+\Delta_{\varphi_{j}}-\Delta_{\varphi_{k}}
$$

There is again a constraint from cyclicity

$$
\lambda_{\varphi_{1} \varphi_{2} \varphi_{3}}^{b c a}=\lambda_{\varphi_{2} \varphi_{3} \varphi_{1}}^{c a b}=\lambda_{\varphi_{3} \varphi_{1} \varphi_{2}}^{a b c}
$$

Cross-ratio dependent piece of four-point function

$$
G_{\varphi_{i} \varphi_{j} \varphi_{k} \varphi_{1}}^{a b c d}(x)=\sum_{\mathcal{O}^{c a}} \frac{\lambda_{\varphi_{i} \varphi_{j} \mathcal{O}^{b c a}}^{\lambda_{\overline{\mathcal{O}} \varphi_{k} \varphi_{1}}^{c d a}}}{\left\langle\mathcal{O}^{c a} \mid \mathcal{O}^{c a}\right\rangle} g_{\Delta_{\mathcal{O}}}^{\Delta_{\varphi_{i} \varphi_{j}}, \Delta_{\varphi_{k} \varphi_{1}}}(x)
$$

Symmetries and defects

Imposing Ising \mathbb{Z}_{2} symmetry

Symmetries and defects

Imposing Ising \mathbb{Z}_{2} symmetry

$$
\begin{gathered}
\varphi^{\varphi^{0 \pm}} \downarrow \\
\mathcal{O}^{\bullet}
\end{gathered}
$$

Selection rules

Will need more details about OPE content of bulk and endpoint operators

- Leading endpoint (SO(2) singlet): $\varphi^{0 \pm}$
- Leading \mathbb{Z}_{2} even scalar: ${ }_{\epsilon}$
- Leading \mathbb{Z}_{2} odd scalar: σ
- Previous studies used just displacement operator, including makes negligible difference
\mathbb{Z}_{2}^{τ} and $S O(2)$ further constrain OPE
- Defect $S O(2)_{\tau}$ spin: s
- \mathbb{Z}_{2}^{τ} parity: p_{τ}
- Bulk $S O(3)$ spin: ℓ

Bulk operators of $S O(3)$ spin $\ell, s=0$ and parity p have $p_{\tau}=\ell+p \bmod 2$
Use as much bulk data as possible ${ }^{1}$

[^6]
Selection rules

First consider endpoints fusing to bulk $S L(2, \mathbb{R})$ primary operators

\mathcal{O} must be

- \mathbb{Z}_{2} even or odd
- $p_{\tau}=0$
- $s=0$
- \mathcal{O} not necessarily a bulk primary
- Need to include all bulk descendants consistent with other symmetries

Selection rules

Next consider endpoints \rightarrow (defect operators/domain walls) or endpoint + bulk \rightarrow endpoint

$\mathcal{O}^{ \pm, \pm}, \mathcal{O}^{ \pm, \mp}, \mathcal{O}^{0, \pm}$ must be

- $p_{\tau}=0$ (except for $\left.\mathcal{O}^{0, \pm}\right)$
- $s=0$

Selection rules

Finally, consider all bulk operators

$\underline{\sigma \times \sigma, \epsilon \times \epsilon}$

- \mathbb{Z}_{2} even
- $p_{\tau}=0$
- $s=0$
$\underline{\sigma \times \epsilon}$
- \mathbb{Z}_{2} odd
- $p_{\tau}=0,1$
- $s=0$
- We include known OPE coefficients: $\lambda_{\sigma \sigma \epsilon}, \lambda_{\epsilon, \epsilon, \epsilon}, \lambda_{\sigma \sigma T}, \lambda_{\epsilon \epsilon} T$
- For scalar bulk primaries, incoporate OPE coefficient of level-2 bulk descendant

$$
\begin{aligned}
\tilde{\mathcal{O}}^{(2)} & =\mathcal{N}\left(\frac{2}{2 \Delta_{3}+1} \partial_{\tau}^{2}+\partial_{i}^{2}\right) \mathcal{O} \\
\lambda_{\mathcal{O}_{1} \mathcal{O}_{2} \tilde{\mathcal{O}}^{(2)}} & =-\mathcal{N} \frac{2\left(\Delta+\Delta_{12}\right)\left(\Delta-\Delta_{12}\right)}{2 \Delta+1} \lambda_{12 \mathcal{O}}
\end{aligned}
$$

Crossing symmetry

Impose crossing symmetry and obtain numerical bootstrap bounds ${ }^{1}$

Use standard semidefinite programming techniques (SDPB ${ }^{2}$)

[^7]
Universal Bound on defect g-function

Assume bulk 3d Ising, no assumptions about defect other than stability to local perturbations

- $0.0585 \leq \Delta_{0+} \leq 0.1195$
- $0.601 \leq g \leq 0.894$

Universal bound on lightest defect operator

- $\Delta_{++} \leq 1.723$
- Saturates near $\left(\Delta_{0+}, \Delta_{++}\right)=(0.1074,0.614)$!

Universal bound on lightest domain wall

- Saturates near $\left(\Delta_{0+}, \Delta_{++}\right)=(0.1076,0.832)$!
- Relevant if $\Delta_{0+} \leq 0.1366$!

Universal bound on subleading endpoint

More aggressive g bound

Assume gaps $\Delta_{++} \geq 1.5, \Delta_{+-} \geq 0.7$

- $0.105 \leq \Delta_{0+} \leq 0.10942$
- $0.6018 \leq g \leq 0.6068$

Conclusions

Summary

- We can obtain accurate defect CFT data by incorporating endpoints
- Found excellent agreement with preliminary fuzzy sphere predictions!

To-Do

- Careful spectrum analysis
- Impose gaps above Δ_{++}, Δ_{+-}

Future directions:

- Spin impurities
- Wilson lines

[^0]: Zoom link https://pitp.zoom.us/j/92671628591?pwd=WjNma3VEV2M4T011dFILMzM2ZUJiUT09

[^1]: ${ }^{2}$ Kondo 1964; Wilson 1975.
 ${ }^{b}$ Sachdev, Buragohain, Vojta 2000.
 ${ }^{\text {c }}$ Thorngren, Else 2018; Barkeshli, Bonderson, Cheng, Wang

[^2]: ${ }^{1}$ Allais, Sachdev 2014; Cuomo, Komargodski, Mezei 2022, ${ }^{2}$ Parisen Toldin, Assaad, Wessel 2017; Allais 2014, ${ }^{3}$ Gimenez-Grau, Lauria, Liendo, Vliet 2022, ${ }^{4} \mathrm{Hu}, \mathrm{He}, \mathrm{W}$. Zhu 2023
 ${ }^{5}$ Gaiotto, Mazac, Miguel F Paulos 2014; Padayasi, Krishnan, M. Metlitski, Gruzberg, Meineri 2022; Liendo, Rastelli, Rees 2013; Behan, Di Pietro, Lauria, Rees 2020

[^3]: ${ }^{1}$ Oshikawa, Affleck 1996.

[^4]: ${ }^{1}$ Cuomo, Komargodski, Mezei 2022.
 ${ }^{2}$ Parisen Toldin, Assaad, Wessel 2017.
 ${ }^{3}$ Allais 2014.
 ${ }^{4} \mathrm{Hu}, \mathrm{He}, \mathrm{W} . \mathrm{Zhu} 2023$.
 ${ }^{5}$ Allais, Sachdev 2014.
 ${ }^{6}$ Zou, Zhou, Gaiotto, He 2023.

[^5]: ${ }^{1}$ Billò, Gonçalves, Lauria, Meineri 2016.
 ${ }^{2}$ Gaiotto, Mazac, Miguel F Paulos 2014.

[^6]: ${ }^{1}$ Simmons-Duffin 2017; Su 2022; Wei Zhu, Han, Huffman, Hofmann, He 2023.

[^7]: ${ }^{1}$ Rattazzi, V. S. Rychkov, Tonni, Vichi 2008.
 ${ }^{2}$ El-Showk, Miguel F. Paulos, Poland, S. Rychkov, Simmons-Duffin, Vichi 2012; Simmons-Duffin 2015.

