Title: Long-Range Order on Line Defects in Ising Conformal Field Theories

Speakers: Ryan Lanzetta

Series: Quantum Matter

Date: November 16, 2023 - 11:00 AM

URL: https://pirsa.org/23110068

Abstract: It is well-known that one-dimensional systems at finite temperature, such as the classical Ising model, cannot spontaneously break a discrete symmetry due to the proliferation of domain walls. The validity of this statement rests on a few assumptions, including the spatial locality of interactions. In a situation where a one-dimensional system exists as a defect in a critical, higher-dimensional bulk system, the coupling between defect and bulk can induce an effective long-range interaction on the defect. It is thus natural to ask if long-range order can be stabilized on a defect in a critical bulk, which amounts to asking whether domain walls on the defect are relevant or not in the renormalization group sense. I will explore this question in the context of Ising conformal field theory in two and higher dimensions in the presence of a localized symmetry-breaking field. With both perturbative techniques and numerical conformal bootstrap, I will provide evidence that indeed the defect domain wall must be relevant when 2 < d < 4. For the bootstrap calculations, it is essential to include "endpoint" primary fields of the defect, which lead to a rigorous and powerful way to input bulk data. I will additionally give tight estimates of a number of other quantities, including scaling dimensions of defect operators and the defect entropy, and I will conclude with a discussion of future directions.

Zoom link https://pitp.zoom.us/j/92671628591?pwd=WjNma3VEV2M4T011dFlLMzM2ZUJiUT09

Long-range Order on Line Defects in Ising Conformal Field Theories Work in progress w/ Shang Liu & Max Metlitski

Ryan Lanzetta

University of Washington

November 16, 2023

- 1. Motivation & Setup^I Go to page 3
- 2. Pinning field defect in $2 \le D \le 4$
- 3. Bootstrap approach
- 4. Conclusions

Page 3 of 37

Defects and phases of matter

Defects come in many forms

$$H = H_0^{\perp} + H_{defect}$$

- Kondo problem^a, impurities^b
- Modified couplings
- Symmetry defects (background flux)^c

^aKondo 1964; Wilson 1975. ^bSachdev, Buragohain, Vojta 2000. ^cThorngren, Else 2018; Barkeshli, Bonderson, Cheng, Wang 2019.

Want to understand long-distance properties of defects

Page 4/38

Long-range order on a line?

Classical one-dimensional systems with local interactions do not typically order

• Ferromagnetic Ising: domain walls thermodynamically favored

 $\hat{+} \quad \hat{+} \quad$

• Consider higher-dimensional critical Ising model with modified bond strength along a line

$$H = -J_* \sum_{\langle ij
angle} s_i s_j - K \sum_{\langle ij
angle \in L} s_i s_j$$

Is there a phase where spins spontaneously order along L?

Defects in field theory

Suppose H_0 tuned to a critical point, D = d + 1 spacetime dimensions

- Assume conformal field theory (CFT) description
- Want to model the combined bulk + defect system

Focus on line defects

• In the IR, can flow to conformal defect preserving at most

 $SL(2,\mathbb{R}) \times SO(d)$

i.e. defect CFT (dCFT)^a

• Modified correlation functions, new critical exponents

$$\langle \mathcal{O}(x)
angle = rac{\mathcal{C}_{\mathcal{O}}}{|x_{\perp}|^{\Delta}} \ \ \langle \hat{\mathcal{O}}(y) \hat{\mathcal{O}}(z)
angle = rac{1}{|y-z|^{2\hat{\Delta}}}$$

^aBillò, Gonçalves, Lauria, Meineri 2016.

Defect Renormalization Group

Simple case: perturb by relevant bulk operator, starting from no defect

$$S = S_{CFT} + h \int d\tau \, \mathcal{O}(\vec{x}, \tau) \qquad \Delta_{\mathcal{O}} < 1$$

Such RG flows constrained by monotonicity theorem¹

Defect *g*-theorem

The *g*-function defined by

$$\log g \equiv \log Z_{defect+bulk}/Z_{bulk}$$

obeys $g_{UV} > g_{IR}$ at the fixed points under defect RG flow.

- In D = 2, follows from Affleck-Ludwig g-theorem from boundary conformal field theory
- Trivial defect has g = 1

¹Zamolodchikov 1986; Casini, Landea, Torroba 2016; Friedan, Konechny 2004; Kobayashi, Nishioka, Sato, Watanabe 2019; Cuomo, Komargodski, Raviv-Moshe 2022.

Defect Hilbert spaces

Consider space as S^d , place conformal defects \mathcal{D}^a , \mathcal{D}^b at antipodal points

- Quantizing with different defect types gives defect Hilbert spaces \mathcal{H}_b^a
- φ^{ab} called *defect-changing* operators¹

¹Kim, Kiryu, Komatsu, Nishimura 2017.

Symmetry transformations of line defects

If we have global 0-form symmetry G, line type may transform under G^1

¹Kitaev, Kong 2012; Bartsch, Bullimore, Grigoletto 2023; Bhardwaj, Schafer-Nameki 2023.

Explicit and spontaneous defect symmetry breaking

Imagine a \mathbb{Z}_2 long-range ordered phase on a defect. As a conformal defect $\mathcal{D}^{sp\pm}$

- \mathbb{Z}_2 symmetric
- Expect two topological local operators corresponding to each symmetry-broken vacuum

I₊, *I*_

where $I_{+} - I_{-}$ is an order parameter with LRO

- Can consider local and domain wall perturbations
- Operator spectrum described by

$$\mathcal{H}_{sp\pm}^{sp\pm} = \mathcal{H}_{+}^{+} \oplus \mathcal{H}_{-}^{+} \oplus \mathcal{H}_{+}^{-} \oplus \mathcal{H}_{-}^{-}$$

- Can separately study each \mathcal{H}_b^a , i.e. in the context of explicit symmetry breaking
- Sometimes domain walls forbidden in quantum problems: can be related to SPT physics¹

¹Liu, Shapourian, Vishwanath, M. A. Metlitski 2021; Thorngren, Vishwanath, Verresen 2021; Prembabu, Thorngren, Verresen 2022.

Page 10 of 37

Pinning-field defect operators

In this talk, will consider various species of operators

Goals

Want to study the pinning field defect for $2 \le D \le 4$

- Long history of existing literature (analytic¹, M.C.², bootstrap³, fuzzy sphere⁴)
- Want to advance bootstrap study of line defects
- Previous works: bulk-to-defect, defect crossing⁵

$$\sum_{\mathcal{O}} \underbrace{\begin{array}{c} \mathcal{O}_1 \\ \mathcal{O} \end{array}}_{\mathcal{O}} = \sum_{\hat{\mathcal{O}}} \underbrace{\begin{array}{c} \mathcal{O}_1 \\ \mathcal{O} \end{array}}_{\hat{\mathcal{O}}} \underbrace{\begin{array}{c} \mathcal{O}_2 \\ \mathcal{O} \end{array}}_{\hat{\mathcal{O}}}$$

$$\sum_{\hat{\mathcal{O}}} \underline{\hat{\mathcal{O}}_1 \, \hat{\mathcal{O}}_2 \, \hat{\mathcal{O}}}_{\bullet} \ \underline{\hat{\mathcal{O}}} \ \underline{\hat{\mathcal{O}}}_3 \, \underline{\hat{\mathcal{O}}}_4 = \sum_{\hat{\mathcal{O}}} \underline{\hat{\mathcal{O}}_4 \, \hat{\mathcal{O}}_1 \, \hat{\mathcal{O}}}_{\bullet} \ \underline{\hat{\mathcal{O}}}_2 \, \underline{\hat{\mathcal{O}}}_3$$

• Include defect-changing operators, do standard 4-point bootstrap

¹Allais, Sachdev 2014; Cuomo, Komargodski, Mezei 2022,²Parisen Toldin, Assaad, Wessel 2017; Allais 2014,³Gimenez-Grau, Lauria, Liendo, Vliet 2022,⁴Hu, He, W. Zhu 2023 ⁵Gaiotto, Mazac, Miguel F Paulos 2014; Padayasi, Krishnan, M. Metlitski, Gruzberg, Meineri 2022; Liendo, Rastelli, Rees 2013; Behan, Di Pietro, Lauria, Rees 2020

All conformal defects in D = 2 Ising CFT known¹

• Related to conformal boundary conditions of orbifold free boson

Pinning field defect is "separating" in D = 2

i.e. equivalent to cutting and imposing "fixed" conformal boundary conditions

¹Oshikawa, Affleck 1996.

I

Use boundary CFT

• Fixed Cardy states in Ising

$$|\pm
angle=rac{1}{\sqrt{2}}\left(|0
angle
angle+|\epsilon
angle
ight\pm2^{1/4}|\sigma
angle
ight)$$

• Pinning field defect associated with tensor product Cardy state in $\mathsf{lsing}^{\otimes 2}$

$$|\pm,\pm
angle=rac{1}{2}\left(|0
angle
angle+|\epsilon
angle\pm2^{1/4}|\sigma
angle
ight)^{\otimes2}$$

Read off defect entropy $g = \frac{1}{2}$

$$\frac{1}{2} = \langle 0, 0 | \pm, \pm \rangle =$$

Defect partition function

$$\mathsf{Z}_{\pm\pm}(\tau) \stackrel{\mathrm{I}}{=} \underbrace{ \begin{array}{[} \downarrow \\ \downarrow \pm \end{array}}_{\pm} = \left(\pm \left[\begin{array}{[} \downarrow \\ \downarrow \\ \bot \end{array} \right]_{\pm} \right)^2 = (\chi_0(\tau))^2$$

Domain wall partition function

$$\mathsf{Z}_{\mp\pm}(\tau) = \underbrace{\left(\begin{array}{c} \mathsf{L} \\ \mathsf{T}_{\mp} \\ \mathsf{L} \end{array} \right)}_{\pm}^{2} = (\chi_{1/2}(\tau))^{2}$$

Endpoint partition function

$$\mathsf{Z}_{0\pm}(\tau) = \underbrace{\bigcup_{\pm}}_{\mathbb{L}} = \pm \underbrace{\bigcup_{\pm}}_{\mathbb{L}} = \chi_0(\tau)$$

Operator spectra:

• Defect: Descendants of identity operator

$$\Delta_n^{\pm\pm} = 0, 2+n \qquad n \in \mathbb{N}$$

• Domain walls: Descendants of $\Delta = 1$ primary

I

$$\Delta_n^{\pm,\mp} = 1 + n \qquad n \in \mathbb{N}$$

• Endpoints

$$\Delta_{n,1}^{0,\pm} = n + rac{1}{32}$$
 $n \in \mathbb{N}$
 $\Delta_{n,2} = rac{n}{2} + rac{1}{32}$ $3 \le n \in 2\mathbb{N} + 1$

Pinning field in $D = 4 - \epsilon$

Study the pinning field defect at Wilson-Fisher fixed point in $D = 4 - \epsilon$ (note $\Delta_{\phi} = \frac{D-2}{2}$)

$$S_{WF} = \int d^d x \left[rac{1}{2} (\partial \phi)^2 + rac{\lambda_0}{4!} \phi^4
ight]$$

 $S_{def} = \int d au \ h_0(au) \phi(0, au)$

We can allow discontinuities in $h(\tau)$ to create endpoint, domain wall, etc.

In terms of appropriate dimensionless couplings, non-trivial fixed point appears in D < 4

$$\frac{\lambda_*}{(4\pi)^2} = \frac{\epsilon}{3} + \frac{17}{81}\epsilon^2 + \mathcal{O}(\epsilon^3) \qquad h_*^2 = 9 + \epsilon\frac{73}{6} + \mathcal{O}(\epsilon^2)$$

 ϕ renormalizes differently along the defect

$$\Delta_{++} = 1 + \epsilon - rac{41}{27}\epsilon^2 + \mathcal{O}(\epsilon^3) \qquad \stackrel{\mathsf{Pade}}{\longrightarrow} \qquad \Delta_{++}(D=3) pprox 1.55 \pm 0.14$$

Pinning field in $D = 4 - \epsilon$

Can attempt to estimate Δ_{0+} and Δ_{+-}

Both receive large corrections at $\mathcal{O}(\epsilon)$

$$\Delta_{0+} = 0.113986(1+1.03454\epsilon + \mathcal{O}(\epsilon^2)) \qquad \stackrel{d=3}{=} \qquad 0.231909$$
$$\Delta_{+-} = 0.455945(1+1.58261\epsilon + \mathcal{O}(\epsilon^2)) \qquad \stackrel{d=3}{=} \qquad 1.17753$$

At Gaussian fixed point in d = 4, h is exactly marginal and Δ_{+-} may be tuned continuously

Survey of defect CFT data in d = 3

Collect various estimates of dCFT data

	Analyțic	MC	Fuzzy sphere
Δ_{++}	1.55 ± 0.14^{1}	${}^{1.60\pm0.05^2}_{1.52\pm0.06^2}_{3}$	1.63 ± 0.06^4
Δ_{+-}	1.17753	$\frac{1.4\pm0.03^3}{?}$	Unpublished: $\sim 0.837^6$
Δ_{0+}	0.231909 ⁵	0.0935 ± 0.0035^3	Unpublished: $\sim 0.1075^6$
g	0.569783^{1}	?	Unpublished: $\sim 0.6055^6$

Bootstrap?! Let's find out!

¹Cuomo, Komargodski, Mezei 2022.
²Parisen Toldin, Assaad, Wessel 2017.
³Allais 2014.
⁴Hu, He, W. Zhu 2023.
⁵Allais, Sachdev 2014.
⁶Zou, Zhou, Gaiotto, He 2023.

Page 21 of 37

Symmetries and defects

For the defect problem in D = 3

- Consider straight line defect along au axis
- Continuous spacetime symmetry: $SL(2,\mathbb{R}) \times SO(2)_{\tau}^{-1}$

Generators : $D, P_{\tau}, K_{\tau}, M_{xy}$

• Discrete spacetime symmetry²:

$$\mathbb{Z}_2^{ au}: (au, x, y)
ightarrow (- au, x, y)$$

• Discrete internal symmetry: Ising \mathbb{Z}_2

These symmetries lead to various selection rules

¹Billò, Gonçalves, Lauria, Meineri 2016. ²Gaiotto, Mazac, Miguel F Paulos 2014.

OPE of defect-changing operators¹:

For primaries, $SL(2, \mathbb{R})$ symmetry fixes form of OPE

$$\varphi_1^{ab}(\tau) \times \varphi_2^{bc}(0) = \sum_{\varphi_3} \lambda_{\bar{\varphi}_3 \varphi_1 \varphi_2}^{abc} \tau^{\Delta_{\mathcal{O}} - \Delta_{\varphi_1} - \Delta_{\varphi_2}} \sum_{n=0}^{\infty} \tau^n \beta_{\bar{\varphi}_3 \varphi_1 \varphi_2}^{(n)} \varphi^{ac,(n)}(0)$$

¹Runkel 2000.

Important aside: take care of operator normalization

• When the output of OPE contains only defect operators, identity operator may appear $_{_{\rm T}}$

$$\varphi^{ab}(\tau)\varphi^{ba}(0) = rac{\lambda^{aba}_{\varphi\varphi_l}I_a}{\tau^{2\Delta}} + \dots$$

• I^a represents infinite line defect with no local operator insertions, in general

$$g_{a}=\langle I_{a}
angle
eq 1$$

• $SL(2, \mathbb{R})$ symmetry can cyclically permute

$$\langle \varphi^{ab}(\tau) \varphi^{ba}(0) \rangle = \langle \varphi^{ba}(\tau) \varphi^{ab}(0) \rangle \implies g_a \lambda^{aba}_{\varphi \varphi I} = g_b \lambda^{bab}_{\varphi \varphi I}$$

• Can achieve unit-normalization by choosing $\lambda^{aba}_{\varphi\varphi I} = g_a^{-1}$

For three-point functions

$$\langle \varphi_1^{ab}(\tau_1) \varphi_2^{bc}(\tau_2) \varphi_3^{ca}(\tau_3) \rangle \stackrel{\mathrm{I}}{=} \frac{\lambda_{\varphi_1 \varphi_2 \varphi_3}^{bca}}{\tau_{12}^{\Delta_{\varphi_1 \varphi_2 \varphi_3}} \tau_{13}^{\Delta_{\varphi_1 \varphi_3 \varphi_2}} \tau_{23}^{\Delta_{\varphi_2 \varphi_3 \varphi_1}}} \qquad \Delta_{\varphi_i \varphi_j \varphi_k} = \Delta_{\varphi_i} + \Delta_{\varphi_j} - \Delta_{\varphi_k}$$

There is again a constraint from cyclicity

$$\lambda^{bca}_{arphi_1arphi_2arphi_3}=\lambda^{cab}_{arphi_2arphi_3arphi_1}=\lambda^{abc}_{arphi_3arphi_1arphi_2}$$

Cross-ratio dependent piece of four-point function

$$G^{abcd}_{arphi_i arphi_j arphi_k arphi_l}(x) = \sum_{\mathcal{O}^{ca}} rac{\lambda^{bca}_{arphi_i arphi_j \mathcal{O}} \lambda^{cda}_{ar{\mathcal{O}}_{arphi_k arphi_l}}}{\langle \mathcal{O}^{ca} | \mathcal{O}^{ca}
angle} g^{\Delta_{arphi_i arphi_j}, \Delta_{arphi_k arphi_l}}_{\Delta_{\mathcal{O}}}(x)$$

Imposing Ising \mathbb{Z}_2 symmetry ^I

Selection rules

Will need more details about OPE content of bulk and endpoint operators

- Leading endpoint (SO(2) singlet): $\varphi^{0\pm}$
- Leading \mathbb{Z}_2 even scalar: ϵ
- Leading \mathbb{Z}_2 odd scalar: σ
- Previous studies used just displacement operator, including makes negligible difference

$\mathbb{Z}_2^{ au}$ and SO(2) further constrain OPE

- Defect $SO(2)_{\tau}$ spin: s
- \mathbb{Z}_2^{τ} parity: p_{τ}
- Bulk *SO*(3) spin: ℓ

Bulk operators of SO(3) spin ℓ , s = 0 and parity p have $p_{\tau} = \ell + p \mod 2$

Use as much bulk data as possible¹

¹Simmons-Duffin 2017; Su 2022; Wei Zhu, Han, Huffman, Hofmann, He 2023.

Selection rules

First consider endpoints fusing to bulk $SL(2, \mathbb{R})$ primary operators

I

 \mathcal{O} must be

- $\bullet \ \mathbb{Z}_2$ even or odd
- $p_{\tau}=0$
- *s* = 0
- \mathcal{O} not necessarily a *bulk* primary
- Need to include all bulk descendants consistent with other symmetries

Page 29 of 37

Selection rules

Next consider endpoints \rightarrow (defect operators/domain walls) or endpoint + bulk \rightarrow endpoint

 $\mathcal{O}^{\pm,\pm}$, $\mathcal{O}^{\pm,\mp}$, $\mathcal{O}^{0,\pm}$ must be

- $p_{\tau} = 0$ (except for $\mathcal{O}^{0,\pm}$)
- *s* = 0

• For scalar bulk primaries, incoporate OPE coefficient of level-2 bulk descendant

$$egin{aligned} & ilde{\mathcal{O}}^{(2)} = \mathcal{N}\left(rac{2}{2\Delta_3+1}\partial_{ au}^2 + \partial_i^2
ight)\mathcal{O} \ \lambda_{\mathcal{O}_1\mathcal{O}_2 ilde{\mathcal{O}}^{(2)}} = -\mathcal{N}rac{2(\Delta+\Delta_{12})(\Delta-\Delta_{12})}{2\Delta+1}\lambda_{12\mathcal{O}} \end{aligned}$$

Crossing symmetry

Impose crossing symmetry and obtain numerical bootstrap bounds¹

Use standard semidefinite programming techniques (SDPB²)

¹Rattazzi, V. S. Rychkov, Tonni, Vichi 2008.

²El-Showk, Miguel F. Paulos, Poland, S. Rychkov, Simmons-Duffin, Vichi 2012; Simmons-Duffin 2015.

31/37

I

Universal Bound on defect *g*-function

Assume bulk 3d Ising, no assumptions about defect other than stability to local perturbations

Universal bound on lightest defect operator

- $\Delta_{++} \leq 1.723$
- Saturates near $(\Delta_{0+}, \Delta_{++}) = (0.1074, 0.614)!$

Universal bound on lightest domain wall

- Saturates near $(\Delta_{0+}, \Delta_{++}) = (0.1076, 0.832)!$
- Relevant if $\Delta_{0+} \leq 0.1366!$

Universal bound on subleading endpoint

More aggressive g bound

Assume gaps $\Delta_{++} \geq 1.5, \ \Delta_{+-} \geq 0.7$

Conclusions

Summary

- We can obtain accurate defect CFT data by incorporating endpoints
- Found excellent agreement with preliminary fuzzy sphere predictions!

Ŧ

To-Do

- Careful spectrum analysis
- Impose gaps above $\Delta_{++},\,\Delta_{+-}$

Future directions:

- Spin impurities
- Wilson lines