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Abstract: In the usual operational picture, operations are represented by boxes having inputs and outputs. Further, we usually consider the causally
simple case where the inputs are prior to the outputs for each such operation. In this talk (motivated by an attempt to formulate an operational
probabilistic field theory) | will consider what | call the "causally complex” situation. Operations are represented by circles. These circles have wires
going in and out. Each such wire can represent an input and an output. Further, each operation will have a causal diagram associated with it. The
causal structure can be more complicated than the simple case. These circles can be joined together to create new operations. | will discuss
conditions on these causally complex operations so that we have positivity (probabilities are non-negative) and causality (to be understood in atime
symmetric manner). | will also discuss how these properties compose when we join causally complex operations. Causally complex operations are
related to objectsin the causaloid formalism as well as to quantum combs.

Zoom link https://pitp.zoom.us/j/994258861987?pwd=0ODR0OVV FzQUJHeER4OV J2cEo3cvVdDQT09
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27 frameworks

(TF,TB,TS) x (S, C,F) x (OPT,OCT,0QT)

written as {txzo where

TB time backward — prob(incomes|outcomes)

TF  time forward - prob(outcomes|incomes)
t =
TS time symmetric — prob(incomes, outcomes)

C causally Complex (or Circle)

S causally Simple (or Square)
B =
F  Field
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27 frameworks

(TF,TB,TS) x (S, C,F) x (OPT,OCT,0QT)

written as {txo where

TB time backward — prob(incomes|outcomes)

TF  time forward - prob(outcomes|incomes)
t =
TS time symmetric — prob(incomes, outcomes)

C causally Complex (or Circle)

S causally Simple (or Square)
T =
F  Field

OCT Operational probabilistic Classical Theory

OPT Operational Probabilistic Theory
0=
OQT Operational Quantum Theory

This seminar: TSSOPT, TSCOPT, (and maybe TSSOQT, TSCOQT).
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Simple, Complex, and Field

Simple

Complex

b

A
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Simple, Complex, and Field

b

Simple X A

Complex

Field C
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The structure of an OPT

Operational Descriptive Framework (t2ODF)

P(')l

f.;’I:O PT

Operational Equivalence Formalism (t2OEF)

Positivity, causality, and composition theorems

tomographic IocalitvI

Fiducial Operation Expansion (tzFOpnE)

|

Duotensor Calulations (txDC)
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The structure of OQT

toxODF
r()
“V ____Ci’r_"e_‘:‘fcln_df'lc_e____ Operator Tensor Framework
MIIEEF ‘ ' (txOprTensF)
— tomographic
txOQT | = Io::alitg; phi I
~- ) equal fiducial matrices ) Fiducial Operator Expansion
f2FOpnE | ¢ ’ (txFOprE)
\ //f

txDC

Pirsa: 23110066 Page 9/72



Related work

» This is a natural development of my work from 2001 (5 axioms),
2005-8 (the causaloid approach where higher order objects were
defined), 2010-16 (duotensors, operator tensors,...) and 2021 (time
symmetry). It is motivated by Quantum Gravity considerations but
that will not be evident in this talk.

» This work has, at its core, ideas from the Quantum Combs work of
Chiribella, D'Ariano, and Perinotti (2008,9).

> The work is strongly influenced by the diagrammatic line of thinking
(Penrose, Seilinger, Coecke, ...) neatly summarised in the book by
Coecke and Kissenger.

> The ideas on time symmetry are influenced by the work of Di Biagio,
Dona, and Rovelli (2020).

» | will assume definite causal structure throughout but there are
strong connections with the work of CDP and Oreshkov, Costa,
Brukner (2012) and subsequent work. N

> There is a strong synergy with the work of Oeckl - his general
boundary formalism (2003) and positive formalism (2012).
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Simple - the elements

T
Simple. x— B —17v
operation ‘

a

X
Unique R a’ '
deterministic a‘
: 2R |

terminals

Readout x —{2—x prob( X X ):

boxes
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Deterministic and nondeterministic operations

We can make readouts implicit.

Then we have a nondeterministic operation - denoted by non-bold font
(e.g. D).

If there are no implicit readouts have a deterministic operation - denoted
by bold font (e.g. B).

Page 12/72




Simple Networks and Circuits

N
w

]
]

]
0w
=]

Ed

T

Simple network Simple circuit

Must be DAGs.

We can complete a network into a circuit by a complement network.
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Probability assumption and equivalence

Probability assumption. Every circuit has a probability associ-
ated with it that depends only on the specification of that circuit.

( how )
prob|  .@em e aem | = prob(w,z,y, z|circuit spec)
o]

Equivalence Two networks are equivalent (denoted by =) if they
have the same probability when completed into a circuit by the
same complement network for all such complement networks.
This means that the two networks have to have the same causal

structure.
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Probability assumption and equivalence

Probability assumption. Every circuit has a probability associ-
ated with it that depends only on the specification of that circuit.

( Coem )
prob|  .(@eme o leaoem | = prob(w, x, . 2|circuit spec)
o]

Equivalence Two networks are equivalent (denoted by =) if they
have the same probability when completed into a circuit by the
same complement network for all such complement networks.
This means that the two networks have to have the same causal

structure.
A

This notion of equivalence can be linearly extended (using the p(-)
function) to allow us to expand in terms of fiducial elements.
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Physicality conditions

We impose two conditions on simple operations

Tester positivity

0< prob| WEPE & PR

for all pure D and E. This guarantees
that circuits have non-negative
probability.

Simple double causality

i ‘f b
— B P{R] = X_ELP R B v = |£|E—?’

Guarantees causality and subunity.
Nondeterministic operations have < rather
than =.

Operations satisfying tester positivity and simple double causality are

called physical

Simple forward causality means cannot signal from future to past without
conditioning on something in the future.

Simple backward causality means cannot signal from past to future
without conditioning on something in the past.
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Physicality under composition

u |
d
Z
75
Al
X1 A v
da

Composition theorem. If we join physical
operations together then the resulting
network is also physical?.

“for the positivity part of this proof we need to
assume that pure preparations and results satisfy
tester positivity
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Main idea
Define complex operations to be equal to simple networks
h
\.
v G (-'” 0."’\.,)
T T 1 Cy )
;) e
A )
e ko — X
\‘\ I{ { Yy ) j‘\\
\ La (" )
E ‘\ xb”/
Cflf u— F |—v ~
1\ Causally complex operation
f
where
ct=g ¢ =h y'=0 y =w
+ - —_—
a’=d a =e N
b"=0 b =f xt=u x =v
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Motivation for a = ata~ notation

This comes from OQFT.

Field
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Causal diagram of complex operation

k‘l
A}
w— G
g/ _J \
e "k N
\ \
E

d u—

at =d
b" =0
x"=u
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Causal diagram of complex operation
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Interconvertible forms

y € y m
m'=gf m =h
. y' =0 y =w
P, - P at=d a =e
a b- a’ xt=u x =v
X X

Have causal diagram

5.7 - .
P ~ /:.1\‘.‘
VN S [
\\\%.-'}_ ) \"\ \|
\ \ .
- K \ | Still
(e) o |

DAG
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Fusing causal diagrams

Consider joining

h
\\ = 7 e
] A
F‘) g T \g}—-"“-' \\ \\
!/ / '[ —_— y AY
o (P) \
\ /
J e k | Yl B ‘x \*
\ I N .
‘e \ [ \ / ,l\ (e) - \
" \ [ (e I/ ‘|
q v l\l # [.ra\_:' \ ';L\\ | f _\\
‘d / \ T (d) (—7V)
d u— F v \ A l T
H \ an N "[/
) % \ O
n
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Fusing causal diagrams

Consider joining
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Fusing nodes
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Fusing nodes
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... so the resulting causal diagram is

This is a DAG
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... so the resulting causal diagram is
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Causal spiders

The causal spider

m 3

means that have a causal link connecting every incoming to every
outgoing wire.
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Simplifying causal diagrams

We have the following causal spider identities

If causal diagrams are wired together in a non-DAG fashion we will get
“causal loops” and the diagram will not simplify further.
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Simplifying causal diagrams

We have the following causal spider identities

r 4 ) ./{’-7-_- r 4
N SR - ’:k P — ~\_ S
\;g - \\”’ o> : B—>—af : —
\ Ao :
— —— < : 4 \
o IR o - 5,
- ~ E—— - - - —

If causal diagrams are wired together in a non-DAG fashion we will get
“causal loops” and the diagram will not simplify further.
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Example of a non-DAG causal diagram

Consider the simple network

f h
\ )
\ g \\ / v S
A ;"\ B
N\

? ?\ / N'\‘_ - \'\

{ a b 3
f g

We obtain the causal diagram as follows

(&———b) (by——h)
T 1 joins { I —
O—@ (3)—<—(&)

The loop cannot be removed by simplification.
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Networks and circuits

> Networks and circuits do not appear to be DAG.
» However causal diagrams must be DAGs.

> A circuit has no wires left open so it must simplify to the empty set
diagram. If there are causal loops they block this simplification.
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Physicality

We will have two physicality requirements
> Tester positivity.
> Double causality.
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Special complex operations

We have the following special complex operations to consider
» readout boxes

* R boxes
» | boxes
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Physicality

We will have two physicality requirements
> Tester positivity.
> Double causality.
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Special complex operations

We have the following special complex operations to consider
» readout boxes
> R boxes
> | boxes
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Readout boxes

We have x* and 2~ readout boxes

xt X

xt > &

We can combine these in the compact notation

X xt x
-
X xt x

where z = (x",27).

Pirsa: 23110066 Page 38/72



Pirsa: 23110066

R boxes

7 . & -

where
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lllustrating compact notation

can be written as

where z" =x,z" =y, c" =b, and c™ = a.
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R. and R_ boxes

These special boxes

PP

are used in the double causality condition.

Pirsa: 23110066 Page 41/72



Pirsa: 23110066

| boxes

o & o
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. and |_ boxes

These special boxes

- -4

are used in the double causality condition.
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Strong tester positivity

Strong tester positivity of B is the condition that

( X
|G O v
\ a

But this condition is too strong as it implicitly entails assuming that all
pure C are tester positive.

v

!\

A weaker and more interesting condition is . ..
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Tester positivity

The tester positivity condition on B is that

prob

for all pure preparations G and pure results F.

Page 45/72




Pirsa: 23110066

Synchronous partition assumption with tester positivity.

For any tester positive causally

_ for some h* and w*, where
complex operation

b¥y
\L
by TR
| Bl+)) has c.d. (py)
SE having c.d. [ s
1 w h
X a

and
we can write

w+

h*
[ S
B%—B has c.d. (4a,

X

W

where the causally complex
operations B[+] and B[] are tester
\ positive.

~Ex
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Simple double causality conditions on a deterministic com-
plex operations B consists of the simple forward causality con-
dition is

O - OO

and the simple backward causality condition is

z

This is the same as the simple double causality condition given earlier.

These simple causality conditions are not the full set of causality
conditions in the causally complex case.
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Positivity composition theorem

Positivity composition theorem. Assume all pure preparations
and pure results satisfy tester positivity and that the synchronous
partition assumption with T-positivity holds. If we wire together
two or more causally complex operations, each satisfying tester
positivity, then the resulting network will satisfy tester positivity.

IROSNOS

The proof of this is not trivial since the c wire joining A and B can
consist of many + and — parts. The proof is iterative and involves taking
“bites” out of the causal diagram from one side, then the other.
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Positivity composition theorem
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consist of many + and — parts. The proof is iterative and involves taking
“bites” out of the causal diagram from one side, then the other.

Page 49/72




Pirsa: 23110066

Simple double causality conditions on a deterministic com-
plex operations B consists of the simple forward causality con-
dition is

O - OO

and the simple backward causality condition is

z

This is the same as the simple double causality condition given earlier.

These simple causality conditions are not the full set of causality
conditions in the causally complex case.
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Synchronous partition assumption with simple double
causality.

For any deterministic complex

operator for some h* and w*, where
b ¥
b ¥y \
A T
%i @ has c.d. (py)
) w' El“ é‘q
e , and
satistying simple double causality we
can write v b
\ s
%[:_J has c.d. (za)
\\ 2
b ¥ X a
%Lé = where the causally complex
I operations B[+] and B[-] each

satisty simple double causality.
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Double causality theorem part A

Double causality theorem: Part A. Assume the synchronous
partition assumption with simple double causality holds. Consider
a deterministic causally complex operation B satisfying simple
double causality such that

b ¥
\

— B}—*—C - S\é with c.d.
X a

then we have the double causality conditions

,{y b_\* 5y

5 @ R by b ¥
B J_]

‘f\ \ x a
x* g Ez'ﬂf. xi-?@\ae

where B[p* | are deterministic complex operations satisfying sim-
ple double causality.

v e
1"l
o
=

i
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Simple double causality conditions on a deterministic com-
plex operations B consists of the simple forward causality con-
dition is

O - OO

and the simple backward causality condition is

z

This is the same as the simple double causality condition given earlier.

These simple causality conditions are not the full set of causality
conditions in the causally complex case.
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Simple double causality conditions on a deterministic com-
plex operations B consists of the simple forward causality con-
dition is

O - OO

and the simple backward causality condition is

z

This is the same as the simple double causality condition given earlier.

These simple causality conditions are not the full set of causality
conditions in the causally complex case.
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Double causality theorem part A

Double causality theorem: Part A. Assume the synchronous
partition assumption with simple double causality holds. Consider
a deterministic causally complex operation B satisfying simple
double causality such that

b ¥
\

— B}—*—C - S\é with c.d.
X a

then we have the double causality conditions

,{y b_\* 5y

5 @ R by b ¥
B ] 3

3 &
\ x a
‘ x' ’ Eza* x"?q\a'

where B[p* | are deterministic complex operations satisfying sim-
ple double causality.

TR
11
Z

i
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Double causality composition theorem

Double causality composition theorem. /f we join together
two or more deterministic causally complex operations each of
which satisfies the double causality conditions then the resulting
network will also satisfy double causality.

NORRON

The proof of this is nontrivial. It involves taking iterative “bites” out of
the causal diagram.
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Flowchart for tSOQT

tSODF

Jp(-)
: correspondence Operator Tensor Framework
2 ¢ (tSOprTensF)

tSOQT | = Itomographic I

locality

) equal fiducial matrices . Fiducial Operator Expansion
tSFOpnE | ¢ > (+SFOprE)

—
-
-
T
/
- —

tSDC

We have t =TS.
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Operator Tensors
We represent operator tensors as

This is an element of the space
Py, ®Va, @V, @V, @ PRV @V @ V7

where B
V,, € Ly, :=Ha ® Hy,

is the set of Hermitian operators in £,, and
the income space Py, is a real vector space of dimension N,

the outcome space P??is a real vector space of dimension N
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Networks and circuits

Network

Circuit.

n‘ X

Z Z
k3
\
B
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Operator Tensors
We represent operator tensors as

This is an element of the space
Py, ®Va, @V, @V, @ PRV @V @ V7
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Networks and circuits

Network

Circuit.

n‘ X

Z Z
k3
\
B
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Networks and circuits

Network Circuit.
etwor
"' & z . z||£||
By
=— B PP ¢ P // N
\5\-\- & a/ B v
1 N ’l :
X X = /
m lﬂl A l/ h
[ |
i

The physical wires between boxes (e.g. a) correspond to taking the
partial trace. The pointer wires between boxes (e.g. x) correspond to the
usual tensor summation.

The circuit evaluates to a real number (since the operator tensors are
Hermitian).

Page 62/72




Special operator tensors

R| | R* and R,, | Flatdistribution operators

O3 x] Readout box operator

imal input operators

I'" and I, Ilgnore output and input

operators

—X
X =
X x X2 S-X1 .
—j and X,, and X, | Maximal output and max-
X X X
1
X

Table: Operators that play a special role. We provide diagrammatic and
symbolic notation for these operators.
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Normalisation gauge parameters o, and o?

d
f = (l’aﬂal g = Q’aﬂal
d

where

N, Na

19 = o) (gl 1o, = ' [a)a, (gl

a=1 a=1

where

oo, =1
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Physicality conditions

We get physicality conditions from TSSOPT by correspondence

Tester positivity

i

0 < prob W [ERERH 2 FHTRE]

D

Simple double causality

Page 65/72




Axioms for Simple Quantum Theory

For DAG circuits we have the following axioms:
Axioms for Simple Operational Quantum Theory.
1. All operations are physical.

2. All physical operators have an operation corresponding to
them.
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Basic object - complex operator tensor

This is an element of the space

Va, ® Ve: @ Pu, ® V>4 @ P
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Networks and Circuits
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Physicality conditions - double causality

If we have

then

where B[p*] also satisfy these double causality conditions in place of B.
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Axioms for Complex Quantum Theory

Axioms for Complex Operational Quantum Theory.
0 The causal diagram for any circuit is empty.
1 All operations are physical.
2 All physical operators have an operation corresponding to
them.

The causal circuit for a circuit can only be empty when we join DAG
causal structures appropriately.
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Axioms for Complex Quantum Theory

Axioms for Complex Operational Quantum Theory.
0 The causal diagram for any circuit is empty.
1 All operations are physical.
2 All physical operators have an operation corresponding to
them.

The causal circuit for a circuit can only be empty when we join DAG
causal structures appropriately.
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Conclusions

> We have seen how to formulate the causally simple and complex
case for OPT and OQT.

> There is much | haven't been able to show you. The treatment of
Hilbert space is particularly interesting in the complex case.

» This work is meant to be a stepping stone to a study of indefinite
causal structure in Quantum Gravity.

> The Quantum Equivalence Principle (if true) would be a place where
understanding causality would be important.
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