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Abstract: In quantum metrology, one of the major applications of quantum technologies, the ultimate precision of estimating an unknown parameter
is often stated in terms of the Cramér-Rao bound. Y et, the latter is no longer guaranteed to carry an operational meaning in the regime where few
measurement samples are obtained. We instead propose to quantify the quality of a metrology protocol by the probability of obtaining an estimate
with agiven accuracy. This approach, which we refer to as probably approximately correct (PAC) metrology, ensures operational significance in the
finite-sample regime. The accuracy guarantees hold for any value of the unknown parameter, unlike the Cramér-Rao bound which assumes it is
approximately known. We establish a strong connection to multi-hypothesis testing with quantum states, which alows us to derive an analogue of
the Cramér-Rao bound which contains explicit corrections relevant to the finite-sample regime. We further study the asymptotic behavior of the
success probability of the estimation procedure for many copies of the state and apply our framework to the example task of phase estimation with
an ensemble of spin-1/2 particles. Overal, our operational approach allows the study of quantum metrology in the finite-sample regime and opens
up a plethora of new avenues for research at the interface of quantum information theory and quantum metrology. TL;DR: In this talk, | will
motivate why the Cramér-Rao bound might not always be the tool of choice to quantify the ultimate precision attainable in a quantum metrology
task and give a (hopefully) intuitive introduction of how we propose to instead quantify it in away that is valid in the single- and few-shot settings.
We will together unearth a strong connection to quantum multi-hypothesis testing and conclude that there are many exiting and fundamental open
guestions in single-shot metrology!

Zoom link https://pitp.zoom.us/j/92247273192?pwd=ZkprOFZ0eEdQY jIDY 1hneFNL ckFDZz09
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Quantum Metrology

QUANTUM SENSING
Measure a physical parameter, e.g. a magnetic field

e

@ metrology
/m1 troled3i/ L QUANTUM PARAMETER ESTIMATION
noun Measure a parameter encoded in a quantum system
the scientific study of measurement.
TOMOGRAPHY

Estimate the quantum state of a system
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Traditional Quantum Mefrology

N 0 0 ()
P 4’ P «' F .’ SF ¢’ A .
¥ , 5B, W Want unbiased estimate
.A' / .A' / ‘..-' / ‘A' I
; .'!g'. ; 59;«" ; "!3:. ; .‘Sgh
B | by | b [ b | _
TR HR ' HK R (1 Yy KEltl =t

with low variance

p(t) Q(?)
Cramér-Rao Bound » Inherently asymptotic
» Assumes parameter is already
" 1 approximately known
Var(t) > —— TN e
f(t) » Application difficult to justify in the

finite-sample regime
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An Example

L 2
Alice prepares a plus state, e it2/2 p(t) = cos”(t/2)|+ )X+

lets it evolve under a O 4+ Sin2(t/2)|—><—\

phase Hamiltonian and

sends it to Bob via a () )

channel dephasing it in }:@" e 1 iftZ{0,7}
the plus/minus basis f‘ 0 ifte{0,n}
We are guaranteed there For small ¢, this observable has eigenvalues

exists an observable )
diagonal in the plus/minus T~ dlag(O(t), O(l/t))

basis with Occuring with probability

(T)=t (AT)=1/F P =~ (0(1),0(t%))
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An Example

s _ 2
Alice prepares a plus state, e itZ/2 p(t) = cos”(t/2)|+ )X+
lets it evolve under a e .2
t/2)|—X—
phase Hamiltonian and Q L ( / )l >< ‘
sends it to Bob via a () )
channel dephasing it in :@'.' T 1 iftg{0,7}
the plus/minus basis S 0 ifte{0,7}

5

We are guaranteed there For small ¢, this observable has eigenvalues

exists an observable :
diagonal in the plus/minus T~ dlag(O(t), O(l/t))

basis with Occuring with probability
P =~ (O(1),0(t))

Which means resolving t takes O(tQ) samples

(T)=t (AT)=1/F
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Single-shot Quantum Metrology

//// N |S|t _t| g 57
§:§: ” (((@,v Yy __Yes Success vV
p(t) Q(f) ;N_O_. Failure X

What is the probability of
successful estimation?
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Single-shot Quantum Metrology
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"Expected” success probability

' /

Bayesian success probability
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1= [ dutt ] dr Trp(H)Q(t4+7)]

—0

irsa: 23110063

Page 9/33



Single-shot Quantum Metrology
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Single-shot Quantum Metrology
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"Worst-case" success probability

l \ l

Bayesian success probability Minimax success probability
) )
= /d,u(t)/ dr Tr[p(t)Q(t+7)] n = mtin/ dr Tr[p(t)Q(t+7)]
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The PAC Metrology Framework

___ SUCCESS PROBABILITY
’r] What is the probability of obtaining an estimate

within a fixed tolerance?

ESTIMATION TOLERANCE
What is the smallest tolerance that still guarantees

a fixed success probability?

-2

SAMPLE COMPLEXITY
How many copies of a state do | need to guarantee

a fixed success probability and tolerance?

S|
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Optimal Measurements

Optimal minimax success probability

)
n —%{mtm /_ 5dTTr[p(t)Q(t—|—T)]}
-

Constitutes a semi-infinite program,
think a continuous semi-definite program
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Optimal Measurements

Optimal minimax success probability

)
7 = max {min / dr Tr[p(t)@(t—I—T)]}

Q%) U

» We give a dual formulation without duality gap

» We generalize it to the parametrized channels where we
optimize over combs or strategies with indefinite causal order

» We also give post-processing strategies for fixed
measurements
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Connection 1o

Metrology problem

p(t1)

ypothesis Testing

p(t2) p(ts)

| I
] ® N |

Qt) —
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Connection fo Hypothesis Testing

Multi-hypothesis
testing problem

| p(t1) ) p(t2) o p(ts3) | t

o >25 > 26 )
Q(t) — t — closest t; Pi=1i>7
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Connection fo Hypothesis Testing

Multi-hypothesis
testing problem

| p(t1) ) p(t2) o p(ts3) | t

o >25 > 26
Q(t) — t — closest t; Pi=1i>7

We conclude that

1< Ps({p(t:)}) as long as [t; — t;] > 20



Estimation Tolerance

So far, we analyzed the success probability at fixed
tolerance. But in applications, we often care about
the achievable precision at fixed success probability.

Minimax estimation tolerance

t | 5

o 6/
0(n) = inf {5' >0 |7 < min/ dr Tr[p(t)Q(H—T)]}
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Finite-sample Crameér-Rao bound

Cramér-Rao bound Our bound
X 1
o(t) > ! 5> O (\/log -7 /@Og 1—ﬁ)
F(t) a /ity F(t)

In the i.i.d. case

ol
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Sample Complexity

What if we care about both the achievable precision
and the success probability? Then we have to ask
how many copies of a state we need to achieve it.

Minimax sample complexity

5
7(7,0) = min {”’ € N |7 < min / _dr T (H)Qu (HT)]}
t J_3
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Phase estimation

=itk
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Local evolution of Q Q Q Q
an ensemble of spins under \ \ \ \
the same phase Hamiltonian oo D o YR 0 %
(BN DY N O
\ \ \ \
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Phase estimation

Local evolution of Q Q O O

an ensemble of spins under \ \ \ \
the same phase Hamiltonian oo D o YR 0 %
(BN DY N O

\ \ \ \

For the regular phase Hamiltonian and t € [0, 27)
this yields a covariant set of states
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Optimal Measurement

We show that the pretty good measurement
Is optimal for covariant state sets

We use this result to obtain a closed-form solution
for the minimax success probability

n(o(A —\'))
(A — )

70,0 = Y ol |

AN
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Pi

Optimal Measurement

We show that the pretty good measurement
Is optimal for covariant state sets

H — Z NI
A > obtain a closed-form solution

[¥) = ZHAW) = Z UAl¥a)  max success probability

sin(d(A — \'))
(A = X)

7 (6,%) = ) halleon
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Pi

Comparison of Prolbe States

The closed-form solution factilitates a numerical
comparison of different probe states

GHZ |IGHZ,,) = 7(|0) + |n))

1

Holland- |HB > _
" vn+1

Burnett

(10) +[1) +[2) +
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Success Probabillity
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Estimmation Tolerance
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Estimation Tolerance
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Comparison with QCRB
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Further Results in The Paper

» We connect our quantities to single-shot entropy measures

» We lift the hypothesis testing connection to guantum
channels with different access models

» We discuss many possible extensions of our results and
definitions, e.g. the multi-parameter case

» We give an overview of open questions
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Open Questions

» What measurements (i.e. POVMSs) give good out-of-the-box
performance guarantees? Pretty good measurement?

» Improved finite-sample analogues of the Cramér-Rao bound

» Understanding the advantages of adaptive processing and
entanglement

» What are the admissible scalings with mixed asymptotics?

» How do noise and error correction fit into this picture?
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summary

» We give new tools to understand guantum metrology in the
single-shot regime

» Our framework is very close to quantum information theory
both in tools as in results

» A plethora of open questions ranging from practically
oriented to completely information-theoretic

» An exciting opportunity to explore new directions in guantum
metrology!
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Thank you for your atfention!
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