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Abstract: Quantum state tomography (QST) is the art of reconstructing an unknown quantum state through measurements. It is a key primitive for
developing quantum technologies. Neural network quantum state tomography (NNQST), which aims to reconstruct the quantum state via a neural
network ansatz, is often implemented via a basis-dependent cross-entropy loss function. State-of-the-art implementations of NNQST are often
restricted to characterizing a particular subclass of states, to avoid an exponential growth in the number of required measurement settings. In this
talk, | will discuss an alternative neural-network-based QST protocol that uses shadow-estimated infidelity as the loss function, named
"neural-shadow quantum state tomography” (NSQST). After introducing NNQST and the classical shadow formalism, | will present numerical
results on the advantage of NSQST over NNQST at learning the relative phases, NSQST's noise robustness, and NSQST's advantage over direct
shadow estimation. | will also briefly discuss the future prospects of the protocol with different variational ansatz and randomized measurements, as
well asits experimental feasibility.

Zoom link https://pitp.zoom.us/j/94167105773?pwd=TXR3TUtwNjV 4V FB4SEpvTkhqd29SUT09
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Overview

* 1) Neural network quantum state tomography (NNQST)

» 2) Classical shadow formalism

 3) Neural-shadow quantum state tomography (NSQST)

* 4) Advantages over NNQST for time-evolved states

* 5) Scalable advantages over direct shadow estimation (*new)
* 6) Noise robustness

 7) Experimental prospects and future directions
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Quantum state tomography

* Quantum state tomography is extremely important for
verifying experimentally prepared quantum states.

* Full guantum state tomography requires one to specify
4™ — 1 independent parameters, therefore
exponentially many measurements.

* The exponential scaling makes full quantum state
tomography unfeasible for larger quantum systems
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Neural network quantum state tomography
(pure state)
Torlai et al. Nature Phys 14, 447-450 (2018).

Neural-network quantum state tomography

Giacomao Torlai, Guglielmo Mazzola, Juan Carrasquilla, Matthias Troyer, Roger Melko & Giuseppe

Carleo™

Target state:

1
[Ty ) = ﬁ(lloo'“> +...4[...001))

Variational ansatz:

pA(X) 1o (x)/2
() = 4 2L 0
\_'_l

relative phases ote) - exact #o7) - RBM
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NNQST training: loss function

The probability distribution can be learnt from direct

1
measurements. Ly~ ——
Dr|
But learning the relative phases requires
measurements in rotated bases.
D (S, B) =
The training dataset consists of measurements over a
set of Pauli bases {B}.
NNQST
|s, B)
-
|@) "
/ P¢(5 B)

Z In py, (s, B)
|SaB)EDT
2
> (s, Blt)(tla)
te{0,1}"™
(s,B[t)#0
Sampling
Self- =~ Pal)
attention
block — @i(s)
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NNQST training: choosing bases

Two important points:
1. The chosen set of bases should be “informationally complete”.

Ex. If the prepared state is the unique ground state of a known Hamiltonian, choose the Hamiltonian’s
Pauli strings as bases.

2. The chosen bases should be “nearly diagonal”.
It means B should have few X or Y elements.

2
This is necessary for efficient classical post-processing, for evaluating »y, (s, B) = ‘ Z (s, Blt)(t|ya)

te{0,1}"
(8,B|t)#0

Ex. For the W state, Torlai et al. chose the following bases:
X262, Do V5 125 KK T o} 5 12, 2, K X e o 1)
XY, 2. 700 )5 {728 2002 b A2 Z, X Y e )
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NNQST prediction: Pauli observables and fidelity

1) For Pauli observables, we use the local estimator and collect samples from the neural network ansatz

!

(ONPy = le )*OL(o ZOL o) Ope) =Y 1;"(“)0

A(o)

The variance of this local estimator is a constant, independent of the system size or the observable
weight (“weight” counts non-identity Pauli matrices in O).

2) For fidelity to another state, we can also define an estimator as fraction of amplitudes, with constant variance.

Detailed proofs can be found in Havlicek, Quantum 7, 938 (2023).
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NNQST prediction: Rényi-2 entropy

An important non-linear function of interest is Rényi-2 entropy.

S, (A) = 1 log (Trpg) (Swap,) = Z Y (0408) Y, (GA0B)YL(6408) Y1 (040p)
— 0,8
= Tro; = exp[—S$2(A)].
0.4 A 20080090000,
. ; . 99 @.
Estimating Swap operator also has a bounded variance, 4 *a

independent of the subsystem size.

Leveraging the sampling advantage of autoregressive
models, a figure from Hibat-Allah et al. Phys. Rev.
Research 2, 023358 (2020).

0.1 7 ¢ Symmetric RNN

0.0 0.2 0.4 0.6 0.8 1.0
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From NNQST (mixed state) to classical shadows

* Motivation: If it is hard to choose a set of informationally-complete bases, can we avoid basis selection by
“pushing everything to a single probability distribution”?

Carrasquilla et al. Nature Phys 14, 447—-450 (2018). Answer is yes! For an informationally-complete POVM
with invertible overlap matrix, one can push everything
to a typical generative model, and predict observables
using the known overlap matrix.

Reconstructing quantum states with generative
models

Juan Carrasquilla &, Giacomo Torlai, Roger G. Melko & Leandro Aolita

a D Lo
DDA +— Synthetic state
—0.65 - "‘*nl'i""“' AAAA "““"u-”‘ Reconstructed state
& R 0.75 1
-0.701 | : 0.50 -
= > 0.25 1 |94
= o) | E2 1105000080
| ‘ 0.00 4|/l AN VYV -.. J .‘..‘_‘_‘.:---a;-_._ ------
_0.80‘. "..-.;‘11“"'...‘.‘
—0.25 14"
| 4 Synthetic state | i
—0.85 1= Reconstructed state 3 I
T T T —0.50 1 T T T T
0 20 40 0 10 20 30 40 50
i 1
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But...

* Unlike pure state ansatz, mixed state NNQST based on informationally-complete POVM has a hard
time predicting non-local observables at large system size, such as fidelity to another state.

¢ Moreover; NNQST'S CIaSSicaI ﬁdellty does not reﬂeCt (b) Estimated Fidelity of Noisy GHZ State and Pure GHZ State
phase errors well even at small system sizes. ™

o
o)

1

L ]

* To further explore the boundaries of tomography from a
theoretical perspective, including the sample efficiency
for different observables, classical shadow formalism
was introduced.

9
o
1

<

o
1

L

NNQST (n=2)
NNQST (n=5)
NNQST (n=10)
0.2 - Shadow (n=2)
€ Shadow (n=5)

Predicting many properties of aquantum system Shadow (1=10)

00 = Correct Behavior K

from very few measurements P . % : 7

0.75
Probability of Z-Error

Estimated Fidelity

Hsin-Yuan Huang E, Richard Kueng & John Preskill

Huang et al. Nature Phys 16, 1050—-1057 (2020)
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Classical shadow formalism

* Unlike model-based mixed state NNQST where the inverse overlap matrix is only used after a physical
probability distribution has been learnt, classical shadow formalism inverts every randomized
measurement snapshot using an analytically derived inverted quantum channel.

" 5 Few repetitions |
Classical shadow expression: ppm— ™
—>|_ob> |_|_ * Predicting ...
p=M"1 (U’f|b><b\U) Wi IR mo
:: s :: representation
Lo Quantum system Measurements
Prediction: — =)
Data acquisition phase Prediction phase
0; = tr(O;p) obeys E|[6] =tr(O;p)
Possible properties
Variance bound (sample efficiency): 9 e @ S 6 Entanglamen
Var [6] — K |:(6 _F [5])2] S HO _ trz(r?) I 2 |-| Two-point correlations @ Hamiltonian m Local observables
shadow

Huang et al. Nature Phys 16, 1050-1057 (2020)
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Classical shadow: Pauli and Clifford

* Pauli shadow:
1) measure in randomized Pauli bases with few single qubit gates
2) ideal for local Pauli observables, with variance bound 4<% (9)||g||2

3) efficient classical post-processing with Pauli observable

* Clifford shadow:
1) measure in randomized Clifford bases with O(n”2) entangling gates
2) ideal for low-rank observables such as fidelity, with variance bound 3tr(O?)

3) efficient classical post-processing with only stabilizer states

Non-linear functions:

Pauli shadows can be used efficiently predict Rényi-2 entropy with small subsystem size
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Classical shadow: Pauli and Clifford

* Pauli shadow:
1) measure in randomized Pauli bases with few single qubit gates
2) ideal for local Pauli observables, with variance bound 42l (0)||0||2,

3) efficient classical post-processing with Pauli observable

* Clifford shadow:
1) measure in randomized Clifford bases with O(n*2) entangling gates
2) ideal for low-rank observables such as fidelity, with variance bound 3tr(O?)

3) efficient classical post-processing with only stabilizer states

Non-linear functions:

Pauli shadows can be used efficiently predict Rényi-2 entropy with small subsystem size

* Neither Pauli or Clifford shadows are guaranteed to efficiently predict high-weight Pauli observables or
Rényi-2 entropy of large subsystem size.
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Combine NNQST and classical shadows?

Machine-learning Augmented Shadow Tomography
(Part 1)

Show affiliations

Cha, Peter ; Skaras, Tim; Huang, Robert; Carrasquilla, Juan; McMahon, Peter ;
Kim, Eun-Ah

* | decided to approach it differently, train
neural network quantum state with classical

shadows.

* In particular, | used Clifford shadows as
training data and an autoregressive model
from Bennewitz et al. Nat Mach Intell 4, 618-

624 (2022).
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NSQST loss function

* We use an infidelity-based loss function, where the infidelity is approximated by a set of Clifford
shadows.

LA(E) =1 - [{¥a|®)*

| N
~1— N ;Tr(O)\ﬁi)

N
1| N
=1
* In the noiseless case, the Clifford shadow takes the expression p;(U;, b;) := M~ (|¢:Xi|) = (2" + 1)|diX@s| — T

N

2™ 41
LM~ 2— =3 (gl I
i=1
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NSQST loss function

* We use an infidelity-based loss function, where the infidelity is approximated by a set of Clifford
shadows.

LA(€) =1~ [{a|@)°

1 XN
A1 — i ZTr(O,\ﬁz—)

i=1

| X
=1-= ; (Al pi(E, Ui, bi) [9ha)

* In the noiseless case, the Clifford shadow takes the expression p;(U;, b;) := M~ (|¢:Xi|) = (2" + 1)|diX¢s| — T

n N
L) ~2— e il Z | {Pi]1on) |2 —— Cannot be computed exactly when system size is large, one of
i=1 Clifford shadow’s classical post-processing issue...

* Let’s first approximate it using Monte Carlo method and try it on small systems. Just for now, a
new set of Clifford shadows are measured in every iteration to avoid overfitting.
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* Pre-train the probability
distribution with direct
measurements, then learn the
relative phases with shadows.

* The pre-training step is about
learning a physical probability
distribution, beyond the
information contained in the
unphysical classical shadows.
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NSQST with pre-training

NSQST with pre-training

s — ,lel.l

~

p@(s, B = (Zl’ .

Pre-train
\Y ALL
—_—

e Z))

Self-
attention
block
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Advantages over NNQST for time-evolved states

Atas et al., Phys. Rev. Research 5, 033184 (2023).

* To find interesting examples beyond ground states, a b
we chose a 6-qubit time-evolved state (after 10°
Trotterized time evolution). 2% 000 .l T
J10-! i % 921 Exact value
S =
~ 0.0
* NNQST is trained on 21 nearly-diagonal ozl | . |
measurement bases (512 shots per base). NNQST  NSQST NSQST with NNQST  NSQST NSQST with
pre-training pre-training
* NSQST is trained on using 100 Clifford shadows per c
iteration. ol — NNQST — NSQST  — NSQST with
. I I ~ ' -traini
* NSQST with pre-training, the pre-training stage = b
uses NNQST’s measurement resources, then 3.0
trained using 100 Clifford shadows per iteration. g 1Y
9 E
& 0.0
1 + z _z - + z _z _— 1.0
Hyin = —5(01 03030, — 03 030407 g
T o
+ o3 oioio; +H.c.) ~d L
0.0+ — : T T
0 50 100 150 200

lteration (adjusted)
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NSQST loss function

* We use an infidelity-based loss function, where the infidelity is approximated by a set of Clifford
shadows.

LA(€) =1~ [(a|@)°

1 XN
A1 — i ZTr(O,\ﬁz—)

i=1

| X
=1-= ; (Al pi(E, Ui, bi) [9ha)

* In the noiseless case, the Clifford shadow takes the expression p;(U;, b;) := M~ (|¢:Xi|) = (2" + 1)|di¥@s| — T

n N
L) ~2— e il Z | {Pi]1on) |2 —— Cannot be computed exactly when system size is large, one of
i=1 Clifford shadow’s classical post-processing issue...

» Let’s first approximate it using Monte Carlo method and try it on small systems. Just for now, a
new set of Clifford shadows are measured in every iteration to avoid overfitting.
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Advantages over NNQST for time-evolved states

Atas et al., Phys. Rev. Research 5, 033184 (2023).

* To find interesting examples beyond ground states, a b
we chose a 6-qubit time-evolved state (after 10°
Trotterized time evolution). 2% 000 .l T
J10-! ety % 921 Exact value
S0 5
~ 0.0
* NNQST is trained on 21 nearly-diagonal ozl | . |
measurement bases (512 shots per base). NNQST  NSQST NSQST with NNQST  NSQST NSQST with
pre-training pre-training
* NSQST is trained on using 100 Clifford shadows per c
iteration. ol — NNQST — NSQST  — NSQST with
. I I ~ ' -traini
« NSQST with pre-training, the pre-training stage . pre s
uses NNQST’s measurement resources, then 3.0
trained using 100 Clifford shadows per iteration. g 1Y
JE
& 0.0
1 + z _z - + z _z _— 1.0
Hyin = —5(01 02030, — 03 030405 g
T o
+ o3 oioio; +H.c.) ~d L
0.0+ — T T T
0 50 100 150 200

lteration (adjusted)
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Advantages over NNQST for time-evolved states

Atas et al., Phys. Rev. Research 5, 033184 (2023).

* To find interesting examples beyond ground states, a b
we chose a 6-qubit time-evolved state (after 10°
Trotterized time evolution). 2% 000 .l T
T10-! irin 3 0'2’Ex€:|ct\‘ralue
S )
~ 0.0
* NNQST is trained on 21 nearly-diagonal p . |
measurement bases (512 shots per base). NNQST NSQST NSQST with NNQST NSQST NSQST with
pre-training pre-training
* NSQST is trained on using 100 Clifford shadows per c
Iteration. 404 — NNQST — NSQST  — NSQSTwith
. S I ~ ' -traini
* NSQST with pre-training, the pre-training stage ~ b
uses NNQST’s measurement resources, then 3.0
trained using 100 Clifford shadows per iteration. R
9 E
& 0.0
1 + z _z - + z _z _— 1.0
Hyin = —5(01 02030, — 03 030407 g
T o
+ o3 oioto; +H.c.) ~d L
0.0+ — : T T
0 50 100 150 200

lteration (adjusted)
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* Relative phase are very important
for predicting non-diagonal
observables!

* The kinetic Hamiltonian is clearly
non-diagonal, so incorrect relative
phases will lead to incorrect
observable prediction.
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Why did NNQST fail?
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Advantages over direct shadow estimation (*new)

* Does NSQST offer any advantages over direct shadow

oo S b
estimation? In other words, does a model-based - -
approach offer any advantages over using data alone? ' ;‘rzcirsam;h '
S (REy=d 2 NSQST with
. . . . E 01 \ g. 0.02 | pre-training
 Starting with small system size (6 qubits), we make o 3 | (mproved
two changes to reduce the number of measurements - =
for NSQST with pre-training:
0.0 0.00
. . NSQS'_I‘\_Nilh Clifford Pauli NSQST \_rvith Clifford Pauli
1) re-use the Clifford shadows instead of re- o Prereining pre-training
IME2SURCHINEENVC ry Iteration. mmm NSQST with = NSQST with Clifford shadow = Pauli shadow
pre-training pre-training
L (improved)
2) Although still intractable for general states, we
reduce the classical post-processing error in the loss -
function. 5
(]
A 0.25 A
et
* 1000 direct measurements + 200 Clifford shadows 0004 = : , : %
. . 1 2 3 4 5 6
* 1200 Clifford/Pauli shadows Weight
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Scalable advantage?

0.04

* For a phase-shifted (by pi/2) GHZ state, we fix the | * Final infidelity (single trial) |
number of measurements and check the final * N *
infidelity. - Qe n

Q = W 4 w0 * 1
ool Eo_ ¥ ___ 3 % % % %
* We also predict one of the target state’s stabilizers, : . . : . : :
as system size grows. 5 100 s 200 2y R0 g5 40
n
b 4 NSQST with pre-training (improved strategy)
Direct shadow estimation (Clifford)
: . 1 +$--—-- O -—--——-@--—- S S s, aREEE T
* 3000 direct measurements + 200 Clifford shadows 5 : * g
« 3200 Clifford shadows §§
20+
5 10 15 20 25 30 35 40
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Noise robustness

Going back to NSQST’s loss function, if there is a noise channel
after the Clifford unitary, we can simply modify the shadow
expression to account for it. A stronger noise channel leads to
larger variance in observable estimate.

The loss function is biased, unless we can estimate the strength
of the noise channel with a calibration step.

But! The gradient remains unbiased, even if we know nothing
about the noise channel!

LA() :=1—|(a|®)*

1 N
Koh and Grewal. Quantum 6: N
776 (2022). =1- % (WAl pi(E,Us, b;) [a)

1 1 1 i 2
_127L(1f(5)) - w7 L )|

i=1
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Transformed
loss function

mmm Estimated infidelity === Exact infidelity
(loss function)

a  Amplitude damping channel (applied after U;)

0.50 1

-~
4 0.25 1

0.00 -

0.00 0.05 0.10 0.15 0.20 0.25
L=p

b  Local depolarizing channel (applied after each CNOT within U;)

1.00 1

x  f
h 4

< 0.50

0.00 -

0.00 0.05 0.10 0.15 0.20
1-f
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Future Prospects

1. Incorporate prior knowledge of the target state into the ansatz, such as symmetries.
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Future Prospects

1. Incorporate prior knowledge of the target state into the ansatz, such as symmetries.
2. Reduce classical post-processing problem with more constrained ansatz.
3. Explore new hybrid training strategies with model-based approach.

4. Use other types of randomized measurements.
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Future Prospects

1. Incorporate prior knowledge of the target state into the ansatz, such as symmetries.
2. Reduce classical post-processing problem with more constrained ansatz.

3. Explore new hybrid training strategies with model-based approach.

4. Use other types of randomized measurements.

5. Build a practical tool for experimentalists.

6. More and more...
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Experimental feasibility: hardware-efficient shadows

So far, only Pauli shadows have been
experimentally demonstrated, as no
entangling gates are required.

A recent series of work explores the
intermediate regime between Pauli and
Clifford shadows.

Matrix product state methods are used to
ensure efficient classical post-processing.
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Hu et al. Phys. Rev. Research 5, 023027 (2023).

(a) (b) (c)

C (MO O (H H H H=

& _ ed 1 H.H.ME

) ]‘P)g :5% % ‘P>:§m:§m:$\ag

(OH OHA H H H &

\_ _HH OAd U H A HA
L LorT T

FIG. 3. Classical shadow tomography with (a) finite-depth
random unitary/Clifford circuits (of L layers), (b) a fixed
unitary twirled by single qubit random Clifford gates, and
(c) discrete-time Hamiltonian dynamics (of T steps).

Page 31/36



Ads: exploring excited states and low-lying dynamics

107 Y T2 0.0451
s B ‘\-\“ﬁ Wei et al. Advanced Phys. Research 2300078, (2023).
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Scalable advantage?

0.04

* For a phase-shifted (by pi/2) GHZ state, we fix the | * Final infidelity (single trial) |
number of measurements and check the final * N *
infidelity. - R 3

Q = * 4 - * 1
ool Eo_ ¥ 3 % % % %
* We also predict one of the target state’s stabilizers, : . . : . : :
as system size grows. 5 U
n
b 4 NSQST with pre-training (improved strategy)
Direct shadow estimation (Clifford)
: . 1 +$--—-- - —-@---- S T T SRR S
* 3000 direct measurements + 200 Clifford shadows § ' b b
« 3200 Clifford shadows §§
20+
5 10 15 20 25 30 35 40
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Future Prospects

1. Incorporate prior knowledge of the target state into the ansatz, such as symmetries.

2. Reduce classical post-processing problem with more constrained ansatz.
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Scalable advantage?

0.04

* For a phase-shifted (by pi/2) GHZ state, we fix the | * Final infidelity (single trial) |
number of measurements and check the final * N *
infidelity. - Qe n

Q o * 4 w0 * 1
ool Eo_ ¥ 3 % % % %
* We also predict one of the target state’s stabilizers, : . . : . : :
as system size grows. 5 100 s 200 2 0 g5 40
n
b 4 NSQST with pre-training (improved strategy)
Direct shadow estimation (Clifford)
: . 1 +8--—-- O -—---——-@--—- S S T st &
* 3000 direct measurements + 200 Clifford shadows 5 : * *
« 3200 Clifford shadows §§
20
5 10 15 20 25 30 35 40
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