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Abstract: We investigate perturbations of the Schwarzschild geometry using a linearization of the Einstein vacuum equations within a Bondi-Sachs,
or null cone, formalism. We develop a numerical method to calculate the quasinorma modes, and present results for the case 1= 2. The values
obtained are different than those of a Schwarzschild black hole, and we interpret them as quasinormal modes of a Schwarzschild white hole.
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Quasi-Normal Modes of a Schwarzschild White Hole for the lowest angular

momentum

Amos S. Kubeka, Nigel T. Bishop
Department of Mathematical Sciences, University of South Africa,

South Africa
Department of Mathematics, Rhodes University, South Africa

Abstract

We present the first ever few set of results of the quasi-normal modes of a Schwarzschild
white hole for lower angular momentum [ = 2. In determining these normal modes, we
use numerical methods to solve the solution of the linearized Einstein vacuum equations
in null cone coordinates. Approaching this problem analytically seems to be an
impossible task as comprehensively articulated in the literature. However, we experience
some difficulty in calculating the quasi-normal modes for higher angular momentum
values.
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Penrose diagram
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Bondi-Sachs formalism OR Null cone Formalism

Bondi-Sachs coordinates

* The Bondi-Sachs formalism uses coordinates x; = (u, 1, x4) based
upon a family of outgoing null hypersurfaces.

* We label these hypersurfaces by u = const., null rays by x4(4 =
2,3), and the surface area coordinate by r.
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Bondi-Sachs metric

* In this coordinates system the Bondi-Sachs metric takes the form

ds? = — [ezﬁ (1 + g) — 7 e U2 ] du? — 2e?Pdudr

—ZTZhAB UBdudxA + T'ZhAdeAde,

* Where h4Bhp = 84 and det(h,g) = det(gap), with g4 being a unit
sphere metric,

* h,g conformal 2-metric, and has only two degrees of freedom (4 and X
péqlarization of gravitational waves).

« U is the complex spin-weighted field given by U = U#q,.
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Problem: Thin Matter Shell

We linearize the Einstein equations when:

* the metric is Bondi-Sachs,

* the background is Schwarzschild, and

* when there is a matter source in the form of a thin shell whose
density varies with time and angular position.
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The linearized Einstein equations
Metric quantities and spherical harmonics

We regard the density and metric quantities as being small, i.e.
p, ), B, U, wwithW = —-2M +w

And we assume the following ansatz

o J = Re(Jo(r)e'"%)oZim, U = Re(Us(r)e'"*)iZm, § = Re(Bo(r)e'"™)eZim
* w = Re(wq(r)e'"%):Zim,

* (4)

* where |, 7y, and o are fixed.
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The linearized Einstein equations

Metric quantities and spherical harmonics

We regard the density and metric quantities as being small, i.e.

p, ), B, U,wwithW = —-2M +w

And we assume the following ansatz

o J = Re(Jo(r)e'"%)oZim, U = Re(Us(r)e'"*)iZm, § = Re(Bo(r)e'"™):Zim
*w = Re(wo(r)ei"“%)zZ,m,

* (4)

* where |, 1y, and o are fixed.
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Equations decompose into
* Hypersurface equations for ﬁ u,w:
4

ﬁr = 8mTy,
ARy 4 —(465 — 2r<’§ﬁr + réJ +r3U,, + 4r2U,.) = 8nqATy4
h4BR,p: (4 — 200 ) + = (6 2J]40%) +—; (r46 U+r*dU),
—Zwr = 8 (h* " Ty — rgT)
* Evqlution equations for J
2M
© q4qPRup: =20 2B + (2B U), — 2(r - M), — (1 =22) 7%,
+ZT(TJ),ur — BHQAQBTAB

Constraints Ry; (Roo,Ro1,9"Roa)
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System of ordinary differential

* From the Hypersurface and evolution equations, we get the following
system of ordinary differential

d?J dJ
23 (1 — 2xM) —= + 2—= (2x% + iox — 7x>M)
5 d)f dx
x(I“+1-2) 5 .
—2 > + 8Mx= —ioc)J), =0

dazJ 1
Where: J,(x) = dx02+ and x = —, and the formula for general of the
angular momentum of the system L.

This equations cannot be solved analytically but numerically.
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Numerical problem specification

* The ODE above has singularities;
at x = 0 (essential, in the case of a Schwarzschild black hole ), and
x = 0.5M (regular, in the case of Schwarzschild white hole).

* Then our problem translates to searching for values of o for which a
solution to the ODE that is regular everywhere in the interval
[0,0.5M] exist; these values of o are the QNMs.

* NB! This is the same situation that is faced when finding the quasi-
normal modes of a black hole
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A. Asymptotic series solution about the essential
singularityatx =0

* The series solution J,(x) = ;-1 a,x™ to the ODE can be generated
by the recurrence relation

B n?+n-6 2n(n+2) .
-1 %1 + an-2M 2ic(n—1) WIE

a1=1, a2=0.

Ay =

* This series solution has radius of convergence zero, although it is
asymptotic
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Asymptotic theory

* We use the asymptotic theory by F. Olver “ Asymptotics and special
functions (Academic Press, New York, 1974) “ to investigate the
above series solution about the singularity at infinity,

* by transforming the ODE to its asymptotic form

« z%(z — 2) d JZ(Z) — z(2z%i0 + 2z — 10) de(z)
—(2z%i0 + 4z + 16)12(2) =0

using the transformation x —>%z = %, and have normalized the scaling of
Z by setting M = 1.
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* Then the solutions can be written as

wi N dsi
J2j(z) = exp(4;z)z" s

s=0

Where A; =0, u; = 1,4, = 2io, u, = 3 + 4io.

By the asymptotic theory, we let the solution to the ODE to be written

as
J2(2) = L (Z) + €,(2)
Where L,,(z) = exp(llz)zﬂl yn-l—=24 and we define the residual
SO e () Rn(2)
n\Z Ly n\Z
1D L DD 4 go)Ln(e) =
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* With

Ra(2)] < =

NB! In some region, and where B,, is calculable, |z| > b.

Olver (1974) obtained the bound on €,,(z) provided the quantity
C(n, b, o) defined by

VAT (5 (n+ 1) + 1))
IZiJlF(% n+1)+ %))(n +1) &

C(n,b,0) =

Where f is bounded by
p

. 3—4io
< |4io| + |8

b—2

1+ io
b—2

)

+ ‘3 + [2i0|(|2 + 4io| + ‘2

5 1
b(b—Z)‘

5)
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* Given o and b, we use numerics to determine conditions on n such
that C < 0.99 and then we bound €,(z) by
2By,

@ = e T b, o)l

We also bound the error €}, (x) in using a finite series to estimate
dJ,(x)

, by noting that

dx
dJz(x) _ 2 dJ,(x)
dx dz
The bound on the error is io
, 2lic|f
|En(x)| < -

B(1—-—C(n,b,o))z" 1
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Numerical implementation

By the transformation

1 dJ
J() = ul®) = =T (4

And defining the new independent variable v(x) , u(x) — v(x) = ﬁ

and noting that at small x, v ~ x, the ODE transform into a first-order
Ricatti equation

=14 ((x—v) (2+2 )—x(7x+8v)) (%)
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* Then the solutions can be written as

wi N dsi
J2j(z) = exp(4;z)z" s

s=0

Where A; =0, u; = 1,4, = 2io, u, = 3 + 4io.

By the asymptotic theory, we let the solution to the ODE to be written

as
Jo(z) =L (Z) + €,(2)
Where L,,(z) = exp(1,2)z*1 Y725 =2, and we define the residual
SO e () Rn(2)
n\Z Ly n\Z
1,2 +f(z ) + g(2)L,(2) = ~
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B. Series solution about the regular singularity at x = 0.5M
* We make the transformation

xX—>s=1-— gx
And the ODE transform to

s(1 — 5)3%2) Jj(s) (1 — s)(4ic — 3 + 10s — 7s2) 222
55 + 252)12(5) = (***)

Y29 _ 4o +3 -
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This equation has a series solution )5’ a,,s™ that satisfies the
recurrence relation
3+io 15(4+3i0)
Ay = } - 7
3—4icg’ 2(1—-io)(3—4io)

a0=1 a1=4‘

B 4nia—8ia—5—3nz—471+ 4+3n2+2n+
S = S n(4ic —n —2) e n(4ic —n —2)
(1—-n)(1+n)
“i=3 n(4ic —n —2)

Pirsa: 23110052 Page 23/34



Numerical implementation

The radius of convergence of the above seriesis s < 1, and, given g,
the numerical evaluation of the coefficients, and then of the series, is
straightforward.

Using x. = 0.25 means that we need to evaluate the series at s = 0.5.
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C. Quasi-normal modes

* We have written a Matlab program that, given a value of v,

(a)First, for the essential singularity, use the asymptotic series about
x = 0 to find the value v, of v(x) as defined in (*) at
x = xg = 1/b, and, then integrate numerically the Ricatti Eq. (**)
between x, and x, = 0.25, to obtain a complex number
vy = v(xc); ;

(b) secondly, use the regular series about x = 0.5 and integrate
numerically Eq. (***) between x = 0.5 and x, = 0.25 to find the
complex number v_ = v(x,)

=y
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* By defining g, = v, (o) — v_(0), then the quasi-normal modes are those
values of v such that g, is indistinguishable from zero, and we found to be

s

[ Mo |0Jq X (o| = error

21 0.883 +0.614: 1(3.95 4 0.691) x (6.02 4+ 5.87i)x10~%| = 0.003
0.916 +0.6307 | |(0.578 4+ 2.085i) x (4.776 + 2.212i)x 10~4| = 0.001
1.063 4+ 0.6317 | |(=3.614 4+ 0.639i) x (=0.5861 — 7.792i)x 10~°| = 0.0003
1.199 +0.6247 | |(—3.681 — 7.9897) x (0.234 — 3.876)x 10~°| = 0.0003
1.318 4 0.6114 | |(=1.044 — 8.920i) x (6.402 — 3.489i)x 10~| = 0.000007

For Schwarchild while holemassM =1 and [ = 2.
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Numerical illustrations with the fundamental quasi-normal

mode

Contour plot

* We calculated g, for values of o in therangeo =a +1ib, 0.1 <a <
1.07, 0.05 < b < 0.89, in increments of 0.03.

* The results are shown in the contour plot below
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* from the plot we can read off an estimate for the lowest mode, o =
0.9 + 0.63i.

* We then applied a secant method, obtaining a final estimate for the
lowest quasi-normal mode at

o = 0.883 + 0.614i. (****)

* In this case, xy = 0.036493228795438,
vo = 0.036838521818950 + 0.000637428772012i,
B = 0.988517790240599, and

62 terms were used in the asymptotic series. The contour plot
indicates another
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* By defining g, = v, (o) — v_(0), then the quasi-normal modes are those
values of v such that g, is indistinguishable from zero, and we found to be

Ma |t)gg X (| = error
0.883 + 0.6141 1(3.95 + 0. an) (6.02 4+ 5.871)x 10~*| = 0.003
0.916 +0.630¢ | |(0.578 4+ 2.085i) x (4.776 + 2.212i ><10-4| =0.001
1.063 4+ 0.6314 | |(=3.614 + ).6393) x (=0.5861 — 7.792i)x10~°| = 0.0003
1.199 +0.6247 | |(—3.681 — 7.9897) x (0.234 — 3.8761)x 10~°| = 0.0003
1.318 4 0.6114 | |(=1.044 — 8.920i) x (6.402 — 3.489i)x 10~%| = 0.000007

For Schwarchild while holemassM =1 and [ = 2.
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Error analysis

« We use the obtained value (****) and vary the numerical methods so
as to determine the accuracy with g, is determined.

* The integration between xy and x, is carried out with different values of
MaxStep, by 2 X 107°,107°, and 5 X 1077, and also an error

of an amount (1 + i) Q 10~1° is introduced into the value of
Vg at X in the case MaxStep = 2 X 10°.

* Also, numerical integration of Eq. (22) as well as a series solution is used in
the range (x, 0.5).

* So in total, there were four numerical methods comparing to each other.
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 Also, numerical integration of Eq. (***) as well as a series solution is
used in the range (x., 0.5).

* The various curves lie on top of each other and are visually
indistinguishable.

* Taking all these options into account, the maximum value noted for
g, Was (6.02 + 5.87i) x 10™%.

* So, using intermediate results from the secant root-finding process to
estimate

0)
= 3.95 + 0.69i
094 8
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Analysis of the ODE with the quasi-normal mode of a Schwarzschild black hole

* The lowest quasi-normal mode of a Schwarzschild black hole is at
o = 0.37367 + 0.08896i

We have used this value in our cod%, and obtained figure below

0.1

0051

ol | The real (solid line) and imaginary (dotted line) parts

of o(x) in the case 0 = 0.37367 + 0.08896i, indicating that
the lowest quasi-normal mode of a Schwarzschild black hole
is not a quasi-normal mode of ODE.
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