Title: Lieb-Schultz-Mattis anomalies as obstructions to gauging - VIRTUAL

Speakers: Sahand Seifnashri

Series: Quantum Matter

Date: October 31, 2023 - 11:00 AM

URL: https://pirsa.org/23100119

Abstract: In this talk, we identify anomalies of 1+1d lattice Hamiltonian systems as 't Hooft anomalies. We consider anomalies in internal symmetries as well as Lieb-Schultz-Mattis (LSM) type anomalies involving lattice translations. Using topological defects, we derive a simple formula for the 'anomaly cocycle' and show it is the obstruction to gauging even on the lattice. We reach this by introducing a systematic procedure to gauge arbitrary internal symmetries on the lattice that may not act on-site. As a by-product of our gauging procedure, we construct non-invertible lattice translation symmetries from LSM anomalies.

Zoom link https://pitp.zoom.us/j/98084408560?pwd=cllSVnpWcEhPK21aVDZubU4yYWNyQT09

Pirsa: 23100119 Page 1/24

Adobe Accibat for Chrome X
View PDFs and use Adobe Acrobat tools in
Chrome by enabling the Acrobat extension
for Google Chrome.
Enable Extension

Lieb-Schultz-Mattis anomalies as obstructions to gauging

Sahand Seifnashri

Institute for Advanced Study

Quantum Matter Seminar @ Perimeter Institute - Oct 31, 2023

Based on *arXiv:2308.05151*

1/23

Pirsa: 23100119 Page 2/24

Introduction: Dynamical constraints from symmetries

Global symmetries can impose powerful constraints on the dynamics of strongly coupled systems both in the continuum and on the lattice

Examples:

- 1. On the lattice: LSM theorem [Lieb, Schultz, Mattis 1961]
- 2. In the continuum: 't Hooft anomaly matching ['t Hooft 1980]
- ► There is a direct connection between the two examples: both are associated to *anomalies* of global symmetries

2 / 23

Pirsa: 23100119 Page 3/24

Continuum: 't Hooft anomaly matching

't Hooft anomaly = obstruction to gauging a global symmetry

- 1. Anomaly is invariant under RG (anomaly matching)
- 2. Anomaly is computable¹
- ⇒ Anomalous theories cannot be in the trivial phase

For example:

Anomalies in *generalized* symmetries constrain phases of gauge theories in 3+1d [Gaiotto-Kapustin-Komargodski-Seiberg 2017] and in 1+1d [Komargodski-Ohmori-Roumpedakis-SS 2021]

3 / 23

Pirsa: 23100119 Page 4/24

¹No systematic method to compute non-perturbative anomalies

Anomalies on the *Lattice*:

1. **LSM theorem:** Spin- $\frac{1}{2}$ chains with SO(3) and lattice translation symmetry

$$H = \sum_{j} \vec{\sigma}_{j} \cdot \vec{\sigma}_{j+1} + \Delta H$$

cannot have a unique gapped ground state

- * (LSM theorem is a consequence of a mixed anomaly between lattice translation and SO(3) symmetries)
- 2. **Boundary of SPTs**: SPT phases have non-trivial symmetry-protected edge modes, e.g., topological insulators
- * (Often taken as the definition of anomaly on the lattice)
- ▶ Anomalies on the lattice are 't Hooft anomalies

9

4/23

Goal

1. A *microscopic* formula for the anomaly (in internal and translation symmetry) of 1+1d lattice Hamiltonian systems

2. Show that the anomaly is the obstruction to gauging even on the lattice!

0,

5/23

Pirsa: 23100119 Page 6/24

Key references

Group cohomology classification of anomalies:

- ► Chen, Gu, Liu, Wen 2011
- ► Kapustin, Thorngren 2014
- **...**

LSM anomalies:

- ► Cheng, Zaletel, Barkeshli, Vishwanath, Bonderson 2015
- ► Cho, Hsieh, Ryu 2017
- ► Huang, Song, Huang, Hermele 2017
- Ye, Guo, He, Wang, Zou 2021
- **.** . . .
- ► Cheng, Seiberg 2022

Computing the anomaly:

- ► Else, Nayak 2014
- ► Kawagoe, Levin 2021

6/23

Pirsa: 23100119 Page 7/24

Outline

- 1. Introduction
- 2. Topological defects a
- 3. Formula for the anomaly and gauging
- 4. Examples
 - I. Heisenberg chain
 - II. Non-invertible lattice translation symmetry

7/23

Pirsa: 23100119 Page 8/24

Symmetries as topological defects

Symmetry is a unitary operator U that:

- 1. [U, H] = 0
- $2.\ U$ maps local operators into local operators

- ► To manifest the locality property we represent symmetries by topological defects
- ▶ 'Symmetry operators ↔ Symmetry defects' on the lattice!

8 / 23

Pirsa: 23100119 Page 9/24

Example: Transverse-field Ising model

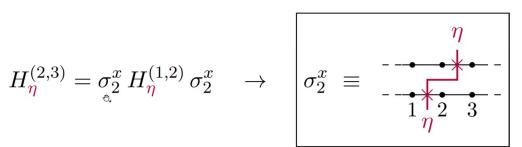
$$H = -\sum_{j} \sigma_{j}^{z} \sigma_{j+1}^{z} - h \sum_{j} \sigma_{j}^{x} \rightarrow \text{has a } \mathbb{Z}_{2} \text{ symmetry } \eta$$

Symm operator:
$$U_{\eta} = \prod_{j} \sigma_{j}^{x}: \quad \sigma^{z} \mapsto -\sigma^{z}$$

$$\begin{array}{ll} \text{Symm operator}: & U_{\pmb{\eta}} = \prod_j \sigma_j^x: \quad \sigma^z \mapsto -\sigma^z \\ \\ \text{Symm defect}: & H_{\pmb{\eta}}^{(1,2)} = -\sum_{j \neq 1} \sigma_j^z \sigma_{j+1}^z + \sigma_1^z \sigma_2^z - h \sum_j \sigma_j^x \end{array}$$

The defect is topological since

$$H_{\eta}^{(2,3)} = \sigma_2^x H_{\eta}^{(1,2)} \sigma_2^x \longrightarrow$$



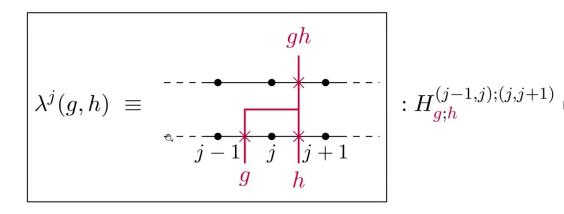
9/23

Topological defects for symmetry group G

Defect Hamiltonian for a $g \in G$ twist on link (j, j + 1)

$$H_g^{(j,j+1)} \equiv \underbrace{--}_{j-1} \underbrace{\stackrel{g}{\underset{j+1}{\overset{\bullet}{\longrightarrow}}}}_{j+1} \underbrace{j+2} --$$

Group multiplication \rightarrow fusion rule for the defects:



$$H_{gh}^{(j,j+1)} = \lambda^{j}(g,h) H_{g;h}^{(j-1,j);(j,j+1)} (\lambda^{j}(g,h))^{-1}$$

10 / 23

Pirsa: 23100119 Page 11/24

Symmetry operators \leftrightarrow Symmetry defects

Operators \rightarrow Defects: $H_g^{(j,j+1)} = U_g^{\leq j} H \left(U_g^{\leq j}\right)^{-1}$

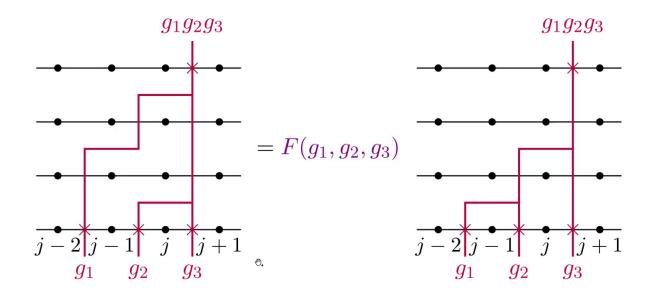
Defects \rightarrow Operators:

$$U_{\mathbf{g}} = \lambda^{L}(g, g^{-1}) \lambda^{L-1}(g, 1) \cdots \lambda^{3}(g, 1) \lambda^{2}(g, 1) (\lambda^{1}(g^{-1}, g))^{-1}$$

11 / 23

Pirsa: 23100119 Page 12/24

Microscopic formula for the anomaly (F-moves)



In equation: 2

$$\lambda^{j}(g_1, g_2g_3)\lambda^{j-1}(g_1, 1)\lambda^{j}(g_2, g_3) = F(g_1, g_2, g_3)\lambda^{j}(g_1g_2, g_3)\lambda^{j-1}(g_1, g_2)$$

12 / 23

Pirsa: 23100119 Page 13/24

 $^{^2}F$ is just a phase given that there is no exact 1-form symmetry

Conditions on $F: G \times G \times G \to U(1)$

0.

1. F satisfies a modified pentagon/cocycle equation³:

$$\frac{F(g_2, g_3, g_4)F(g_1, g_2g_3, g_4)F(g_1, g_2, g_3)}{F(g_1, g_2, g_3g_4)F(g_1g_2, g_3, g_4)} = F(g_1, g_2, 1)$$

2. $\lambda^{j}(g,h)$ has phase ambiguity⁴ that propagates into F:

$$F(g_1, g_2, g_3) \sim F(g_1, g_2, g_3) \frac{\gamma^j(g_2, g_3)\gamma^{j-1}(g_1, 1)\gamma^j(g_1, g_2g_3)}{\gamma^{j-1}(g_1, g_2)\gamma^j(g_1g_2, g_3)}$$

13 / 23

³Analog of the Wess-Zumino consistency conditions in the continuum

⁴Corresponds to local counterterms in the continuum

Anomaly cocycles and group cohomology

1. F defines anomaly cocycles:

$$\omega(g_1, g_2, g_3) = \frac{F(g_1, g_2, g_3)}{F(g_1, g_2, 1)}, \qquad \alpha(g_1, g_2) = F(g_1, g_2, 1)$$

2. Modding out by j-independent phase ambiguities we get $cohomology\ classes$

$$[\omega] \in H^3(G, U(1)), \qquad [\alpha] \in H^2(G, U(1))$$

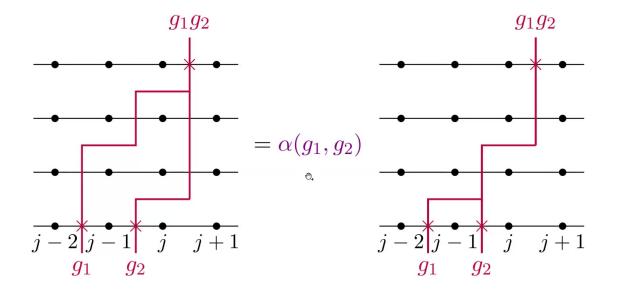
(Modding out by j-dependent phases trivializes α)

- \blacktriangleright [ω] is the 't Hooft anomaly in G
- \triangleright [α] is the mixed anomaly between G and translation (LSM)

14 / 23

Pirsa: 23100119 Page 15/24

The LSM anomaly



In equation:

$$\lambda^{j}(g_1, g_2)\lambda^{j-1}(g_1, 1)\lambda^{j}(g_2, 1) = \alpha(g_1, g_2)\lambda^{j}(g_1g_2, 1)\lambda^{j-1}(g_1, g_2)$$

15 / 23

Pirsa: 23100119 Page 16/24

Gauging: (1) Add dynamical gauge "fields"

Extend \mathcal{H} by adding |G|-dim Hilbert spaces on links:

$$\mathcal{H} \rightarrow \left| \begin{array}{c} \widetilde{\mathcal{H}} = \bigoplus_{g_1, \dots, g_L \in G} & \frac{g_1}{1} & \frac{g_2}{2} & \cdots & \frac{g_{L-1}}{L-1} & \frac{g_L}{L} \\ 1 & 2 & 3 & \cdots & 1 \end{array} \right|$$

and

$$\widetilde{H} = \sum_{g_1, \dots, g_L \in G} H_{g_1; \dots; g_L} \otimes |g_1, \dots, g_L\rangle \langle g_1, \dots, g_L|_{\text{links}}$$

$$\widetilde{\lambda}^{j}(g,h) = \lambda^{j}(g,h) \otimes |1\rangle \langle g|_{(j-1,j)} \otimes |gh\rangle \langle h|_{(j,j+1)}$$

$$\Rightarrow \left[\widetilde{\lambda}^{j}(g,h),\widetilde{H}\right] = 0$$

16 / 23

Pirsa: 23100119 Page 17/24

Gauging: (2) Imposing Gauss's law

$$\mathcal{G}^{j}(g) = \sum_{a,b} \left(\widetilde{\lambda}^{j}(ag^{-1}, gb) \right)^{\dagger} \widetilde{\lambda}^{j}(a, b) \sim \sum_{a,b}$$

$$j - 1 \qquad j \qquad j + 1$$

 \widetilde{H} has a local G symmetry: $\mathcal{G}^{j}(g)\mathcal{G}^{j}(h) = \mathcal{G}^{j}(gh)$

The Gauss's law at site
$$j$$
 is:
$$P_j \equiv \frac{1}{|G|} \sum_{g \in G} \mathcal{G}^j(g) = 1$$

▶ P_j commutes with P_{j+1} iff $F(g_1, g_2, g_3) = 1$:

 \Rightarrow | [F] is the 't Hooft anomaly

17 / 23

LSM anomaly for "on-site symmetries"

Consider a symmetry acting projectively on each site:

$$U(g) = \prod_{j} U^{j}(g)$$

where U^j is a projective representation of G acting on site j. The fusion operators are:

$$\lambda^j(g,h) = U^j(g)$$

Using the formula for the anomaly we get

$$U^{j}(g_1)U^{j}(g_2) = \alpha(g_1, g_2) U^{j}(g_1g_2)$$

⊕*

▶ $[\alpha] \in H^2(G, U(1))$ determines the projective representation of G per site

18 / 23

$I. \text{ spin-}\frac{1}{2}$ antiferromagnetic Heisenberg chain

$$H = \frac{1}{2} \sum_{j} (\sigma_{j}^{x} \sigma_{j+1}^{x} + \sigma_{j}^{y} \sigma_{j+1}^{y} + \sigma_{j}^{z} \sigma_{j+1}^{z})$$

Consider the $\mathbb{Z}_2^X \times \mathbb{Z}_2^Y \subset SO(3)$ symmetry generated by $X = \prod_j \sigma_j^x$ and $Y = \prod_j \sigma_j^y$:

$$\lambda^{j}(\epsilon, \nu; \epsilon', \nu') = (\sigma_{j}^{x})^{\epsilon} (\sigma_{j}^{y})^{\nu} = \underbrace{\begin{matrix} \bullet \\ j-1 \\ j \\ j+1 \end{matrix}}_{(\epsilon, \nu)(\epsilon', \nu')}$$

we get the anomaly cocycles:

$$\alpha(\epsilon, \nu; \epsilon', \nu') = (-1)^{\epsilon'\nu}, \qquad \omega = 1$$

19 / 23

II. Non-invertible lattice translation symmetry

What happens to the lattice translation symmetry after gauging an internal symmetry with LSM anomaly?

20 / 23

Pirsa: 23100119 Page 21/24

II. Gauging $\mathbb{Z}_2 \times \mathbb{Z}_2$ of the Heisenberg (XYZ) chain

$$\widetilde{H} = \frac{1}{2} \sum_{j=1}^{2L} \left(J_x \sigma_j^x \tau_{j,j+1}^x \sigma_{j+1}^x + J_y \sigma_j^y \mu_{j,j+1}^x \sigma_{j+1}^y + J_z \sigma_j^z \tau_{j,j+1}^x \mu_{j,j+1}^x \sigma_{j+1}^z \right)$$

Consider the $\mathbb{Z}_2^X \times \mathbb{Z}_2^Y \subset SO(3)$ symmetry with:

$$\lambda^{j}(\epsilon, \nu; \epsilon', \nu') = (-1)^{j\nu\epsilon'} (\sigma_{j}^{x})^{\epsilon} (\sigma_{j}^{y})^{\nu}$$

This leads to *modified* Gauss's laws:

$$G_{j}(X) = (\tau_{j-1,j}^{x})^{j+1} \mu_{j-1,j}^{z} \sigma_{j}^{x} \mu_{j,j+1}^{z}$$

$$G_{j}(Y) = \tau_{j-1,j}^{z} \sigma_{j}^{y} \tau_{j,j+1}^{z} (\mu_{j,j+1}^{x})^{j}$$

$$ightharpoonup T_{\sigma} \mathcal{G}_j T^{-1} \neq \mathcal{G}_{j+1}$$
 but $T^2 \mathcal{G}_j T^{-2} = \mathcal{G}_{j+2}$

21 / 23

Pirsa: 23100119 Page 22/24

II. Gauging $\mathbb{Z}_2 \times \mathbb{Z}_2$ of the Heisenberg (XYZ) chain After gauge-fixing we find:

$$\widetilde{H} = \frac{1}{2} \sum_{j=1}^{L} \left(J_x(\tilde{\tau}_j^x + \tilde{\mu}_{j-1}^z \tilde{\mu}_j^z) + J_y(\tilde{\mu}_j^x + \tilde{\tau}_{j-1}^z \tilde{\tau}_j^z) + J_z(\cdots) \right)$$

Translation symmetry T becomes a non-invertible symmetry \tilde{T} after gauging which acts as

$$\tilde{\mu}_{j-1}^x \mapsto \tilde{\tau}_{j-1}^z \tilde{\tau}_j^z \mapsto \tilde{\mu}_j^x$$

$$\tilde{\tau}_{j-1}^x \mapsto \tilde{\mu}_{j-1}^z \tilde{\mu}_j^z \mapsto \tilde{\tau}_j^x$$

with the fusion rule

$$\tilde{T} \times \tilde{T} = T^2(1 + \tilde{X})(1 + \tilde{Y})$$

 $ightharpoonup ilde{T}$ can map a local operator into a disorder/twist operator:

$$\tilde{\mu}_j^z \to \tilde{\tau}_j^x \, \tilde{\tau}_{j-1}^x \, \tilde{\tau}_{j-2}^x \, \tilde{\tau}_{j-3}^x \, \tilde{\tau}_{j-4}^x \cdots$$

22 / 23

Summary

- ▶ We found a *microscopic* formula for 1+1d anomalies
- ► Generalized LSM theorem beyond "on-site" symmetries
- ► Introduced a method to gauge non-on-site symmetries
- ▶ Non-invertible translation symmetry from LSM anomalies
- ▶ The method works for mixed anomalies involving any lattice symmetry: $(-1)^F$, time-reversal, reflection, ...
- ► Generalization to higher dimensions?

23 / 23

Pirsa: 23100119 Page 24/24