Title: A theory of Inaccessible Information
Speakers: Jacopo Surace
Series: Quantum Foundations
Date: October 26, 2023-11:00 AM
URL: https://pirsa.org/23100110
Abstract: Out of the many lessons quantum mechanics seems to teach us, one is that it seems there are things we cannot experimentally have access to. There is, indeed, a fundamental limit to our ability to experimentally explore the world. In this work we accept this lesson as a fact and we build a general theory based on this principle. We start by assuming the existence of statements whose truth value is not experimentally accessible. That is, there is no way, not even in theory, to directly test if these statements are true or false. We further develop a theory in which experimentally accessible statements are a union of a fixed minimum number of inaccessible statements. For example, the value of truth of the statements a and bis not accessible, but the value of truth of the statement "a or b" is accessible. We do not directly assume probability theory, we exclusively define experimentally accessible and inaccessible statements and build on these notions using the rules of classical logic. We find that an interesting structure emerges. Developing this theory, we relax the logical structure, naturally obtaining a derivation of a constrained quasi-probabilistic theory rich in structure that we name theory of inaccessible information. Surprisingly, the simplest model of theory of inaccessible information is the qubit in quantum mechanics. Along the path for the construction of this theory, we characterise and study a family of multiplicative information measures that we call inaccessibility measures. arXiv:https://arxiv.org/abs/2305.05734

Zoom link https://pitp.zoom.us/j/91350754706?pwd=V1dVdGM3Zk9MNkp4VlpCYUoxbXg3UT09

A Theory of Inaccessible Information

The consequences of seriously accepting that some statements cannot be directly proven or disproven experimentally.

There is something we cannot experimentally know

Quantum mechanics

There is something we cannot experimentally know

Lattices of statements

Everything we can talk about can be expressed as a statement.
Statement $\quad s_{1}=$ "Everything we can talk about can be expressed with statements."
We denote statements with letters in circles

Lattices of statements

One can play with statements to form new ones

A world with just two statements

$$
\begin{gathered}
s_{1}=\text { "The apple is blue". } \\
s_{2}=\text {."The dop is red"..... } \\
s_{3}:=\neg s_{1}=\text { "The apple is not blue", } \\
s_{4}:=\neg s_{2}=\text { "The dog is not red", } \\
s_{5}:=s_{1} \vee s_{2}=\text { "The apple is blue or the dog is red", } \\
s_{6}:=s_{1} \vee \neg s_{2}=\text { "The apple is blue or the dog is not red", } \\
s_{7}:=\neg s_{1} \vee s_{2}=\text { "The apple is not blue or the dog is red", } \\
s_{8}:=\neg s_{1} \vee \neg s_{2}=\text { "The apple is not blue or the dog is not red", } \\
s_{9}:=s_{1} \wedge s_{2}=\text { "The apple is blue and the dog is red", } \\
s_{10}:=s_{1} \wedge \neg s_{2}=\text { "The apple is blue and the dog is not red", } \\
s_{11}:=\neg s_{1} \wedge s_{2}=\text { "The apple is not blue and the dog is red", } \\
s_{12}:=\neg s_{1} \wedge \neg s_{2}=\text { "The apple is not blue and the dog is not red", } \\
\left.\wedge s_{2}\right) \vee\left(\neg s_{1} \wedge \neg s_{2}\right)=\text { "(The apple is blue and the dog is red) or (Th } \\
\left.\wedge \neg s_{2}\right) \vee\left(\neg s_{1} \wedge s_{2}\right)=\text { "(The apple is blue and the dog is not red) or } \\
s_{15}:=s_{1} \vee \neg s_{1}=\text { "The apple is blue or the apple is not blue", } \\
s_{16}:=s_{1} \wedge \neg s_{1}=\text { "The apple is blue and the apple is not blue". }
\end{gathered}
$$

$s_{13}:=\left(s_{1} \wedge s_{2}\right) \vee\left(\neg s_{1} \wedge \neg s_{2}\right)=$ "(The apple is blue and the dog is red) or (The apple is not blue or the dog is not red)",
$s_{14}:=\left(s_{1} \wedge \neg s_{2}\right) \vee\left(\neg s_{1} \wedge s_{2}\right)=$ "(The apple is blue and the dog is not red) or (The apple is not blue or the dog is red)",

Lattices of propositions

Build or discover nice structures within of the algebra of statements

Truth or false

Every statement has a truth value label attached.

A statements can be true or false

Tables of truth are the rule of propagation of truth values when composing statements.

a	b	$\mathrm{a} \wedge \mathrm{b}$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}

a	b	$\mathrm{a} \vee \mathrm{b}$
\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{F}

\mathbf{a}	$\neg \mathbf{a}$
\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}

Table I. Truth tables.
We talk about propagation because the truth value assignement to a lattice is completely specified by the truth value assigned to its atomic statements.

Composition of statements

Truth assignments compatible with the lattice

Admissible
Not Admissible

Accessibility value

We differentiate between two kinds of statements

Accessible statements (A)

These represent statements which we can formulate and we can verify experimentally.

Non-accessible statements (N)

These represent statements which we can formulate, but we cannot directly verify experimentally.

Accessibility value

We differentiate between two kinds of statements

Accessible statements (A)

These represent statements which we can formulate and we can verify experimentally.

Non-accessible statements (N)

These represent statements which we can formulate, but we cannot directly verify experimentally.

Every statement has an accessibility value label attached.

Composition of inaccessible statements

Accessible statements (A)
Non-accessible statements (N)

Inaccessibility models

TIF Assumption 1: Maximum resolution

Our experimental knowledge is limited to be always uncertain about a fixed number of statements d. We call d the resolution of the model.
\rightarrow Accessible statements are constituted by a minimum number d of inaccessible statements.

TIF assumption 1 example for $\mathrm{d}=2$:
Statements composed by less than d atomic statements are not directly experimentally accessible. For example, for $d=2$ the value of truth of the statements \mathbf{a} and \mathbf{b} is not accessible, but the value of truth of the statement "a or \mathbf{b} " is accessible

TIF assumption 1 graphical representation example for $d=3$:

Two parameters for TIF models:

d : the resolution.
Grafically it is the level in the graph where we can find the first accessible (purple) statement and it can take values from 1 to D.

D : the number of atomic statements or fundamental statements is a free parameter.

Examples: $\quad D=2$

$d=2$, a useless model

Examples: $\quad D=2$

$$
d=2 \text {, a useless model }
$$

A lattice of this form does not contain any experimentally relevant information
$d=$ (Number atomic statements) corresponds ALWAYS to a useless model

Examples: $\quad D=3$
We choose d=2

$$
\begin{aligned}
& d=3 \rightarrow \text { useless } \\
& d=2 \rightarrow ? \\
& d=1 \rightarrow \text { classical }
\end{aligned}
$$

Examples: $\quad D=4$

This is a strong property as other configurations are not allowed by compositional rules.

Try to transform any other statement to accessible and the configuration becomes not admissible.

Structures compatible with a world with resolution $d=2$

With similar methods and nice tricks other properties can be proved one of these properties is:

Every classical model with dimension D inflates to an inaccessible information model with dimension D^{2}

Classical model

More or less

now you should know about logical lattices

Let's relax a bit

Examples: $\quad D=4$

This is a strong property as other configurations are not allowed by compositional rules.

Try to transform any other statement to accessible and the configuration becomes not admissible.

More or less

now you should know about logical lattices

Let's relax a bit

More or less

now you should know about logical lattices

From logic to (quasi-)probability

From logic to (quasi-)probability

Using the methods of Cox, Jaynes and Knuth one relaxes the label association of the lattice from binary to continuous and naturally obtains a (quasi-)probability model.

Quasi-probabilities and probabilities are derived from logical principles and not assumed.

The systems are described by \vec{q} s.t. $\sum_{i} q_{i}=1$.

From logic to (quasi-)probability

A valuation Q of statements with the following properties

- $Q(\mathrm{~T})=1$,
- $Q(\perp)=0$,
- $Q(s) \in \mathbb{R}$,
- $\sum_{s \in \mathcal{A}(\mathcal{S})} Q(s)=1$,
$s \in \mathscr{A}(\mathcal{S})$
- $Q\left(s_{i} \vee s_{j}\right)=Q\left(s_{j} \vee s_{i}\right)=Q\left(s_{i}\right)+Q\left(s_{j}\right)-Q\left(s_{i} \wedge s_{j}\right)$,
- $Q\left(s_{i} \wedge s_{j}\right)=Q\left(s_{j} \wedge s_{i}\right)$,
- $Q\left(s_{i} \wedge s_{j}\right)=Q\left(s_{i}\right) Q\left(s_{i} \mid s_{j}\right)$

The values assumed by Q are completely characterised by the values that Q assumes on the atomic elements of the lattice. We denote these values with the vector \vec{q}.

From logic to (quasi-)probability

From logic to (quasi-)probability

TIF Assumption 1*: Maximum resolution

Our experimental knowledge is limited to be always uncertain about a fixed number of statements d. We call d the resolution of the model.
\rightarrow The knowledge about d atomic statements is inaccessible.

If a set of atomic statements has associated probabilities \vec{q}, how do we quantify the number of inaccessible statements?

How to quantify the number of elements that are indistinguishable/that are inaccessible?

Accessibility and quasi-probability

The inaccessibility measure χ

If the probability of the atomic statements is $\vec{p}_{\frac{1}{d}}=(1 / d, \ldots, 1 / d)$, it means that we cannot distinguish between d of them: there are d inaccessible statements $\Longrightarrow \chi((1 / d, \ldots, 1 / d))=d$.

If the probability of the atomic statements is $\vec{p}=(1 / 2,1 / 2,0, \ldots, 0)$ it means that we cannot distinguish between 2 of them there are 2 inaccessible elements $\Longrightarrow \chi((1 / 2,1 / 2,0, \ldots))=2$.

Request 1: Counting

$\chi\left(\left(\frac{1}{d}, \ldots, \frac{1}{d}, 0, \ldots, 0\right)\right)=d$
d

Request 2: Monotonicity

$\forall \vec{p} \neq \vec{p}_{\frac{1}{d}} \in \Delta_{d}, \quad \chi\left(\vec{p}_{\frac{1}{d}}\right)>\chi(\vec{p})$

Request 3: Symmetry

$$
\chi\left(P_{\pi} \vec{p}\right)=\mathscr{X}(\vec{p})
$$

Request 4: Multiplicativity

$$
\chi(\vec{p} \otimes \vec{q})=\chi(\vec{p}) \chi(\vec{q})
$$

Ansatz

$\chi(\vec{p})=\left(\sum_{i=1}^{D} f_{i}\left(p_{i}\right)\right)^{z}$
f_{i} measurable functions
$z \in \mathbb{R}$

The inaccessibility measure χ

Lemma:

Given a probability vector $\vec{p}=\left(p_{1}, p_{2}, \ldots, p_{n}\right)$ with $n \geq 3$ the most general χ characterised by the requests form the 1 -parameter family χ of uncertainty measure defined as

$$
\chi_{c}(\vec{p})=\frac{1}{\sqrt[c-1]{\sum_{i=1}^{D} p_{i}^{c}}}
$$

with $c \in \mathbb{R}_{+}$and $c \neq 1$.
Examples:

$$
\begin{array}{lll}
\chi_{2}((1,0))=1 & \chi_{2}\left(\left(\frac{1}{2}, \frac{1}{2}\right)\right)=2 & \chi_{2}\left(\left(\frac{1}{3}, \frac{2}{3}\right)\right)=\frac{9}{5} \\
\chi_{2}((1,0,0))=1 & \chi_{2}\left(\left(\frac{1}{2}, \frac{1}{2}, 0\right)\right)=2 & \chi_{2}\left(\left(\frac{1}{2}, 0, \frac{1}{2}\right)\right)=2
\end{array}
$$

The inaccessibility measure χ

$$
\chi(\vec{p})=\frac{1}{\sum_{i=1}^{D} p_{i}^{2}},
$$

The inaccessibility measure χ

Assumption 1 can be recasted as asking for the inaccessibility of the \vec{q} to be lower bounded by the resolution d.

Suppose $\vec{q}_{\#}=(1 / 3,2 / 3,0,0)$. In this case one would distinguish the

$$
\chi_{2}\left(\vec{q}_{\#}\right)=\frac{9}{5}
$$ non-distinguishable elements a and b.

If $\vec{q}_{v}=(1 / 2,1 / 2,0,0)$. In this case one cannot distinguish a from b.

$$
\chi_{2}\left(\vec{q}_{v}\right)=2
$$

$$
\begin{aligned}
& Q(a \vee b)=q_{1}+q_{2} \\
& Q(c \vee d)=q_{3}+q_{4}
\end{aligned}
$$

The inaccessibility measure χ

In order for assumption $\mathbf{1}$ to be satisfied, the inaccessibility of the \vec{q} has to be lower bounded by the dimension d.

Examples of possible \vec{q} with $\chi_{2}(\vec{q})=2$:

$$
\begin{gathered}
\vec{q}=\left(\frac{1}{2}, \frac{1}{2} 0,0\right) \\
\vec{q}=\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right) \\
\vec{q}=(0.678422,0.156921,0.0543703,0.110287) \\
\vec{q}=(0.390021,-0.181366,0.36504,0.426305)
\end{gathered}
$$

The inaccessibility measure χ

$$
\chi(\vec{p})=\frac{1}{\sum_{i=1}^{D} p_{i}^{2}},
$$

The inaccessibility measure χ

Assumption 1 can be recasted as asking for the inaccessibility of the \vec{q} to be lower bounded by the resolution d.

Suppose $\vec{q}_{\#}=(1 / 3,2 / 3,0,0)$. In this case one would distinguish the

$$
\chi_{2}\left(\vec{q}_{\#}\right)=\frac{9}{5}
$$ non-distinguishable elements a and b.

If $\vec{q}_{v}=(1 / 2,1 / 2,0,0)$. In this case one cannot distinguish a from b.

$$
\chi_{2}\left(\vec{q}_{v}\right)=2
$$

$$
\begin{aligned}
& Q(a \vee b)=q_{1}+q_{2} \\
& Q(c \vee d)=q_{3}+q_{4}
\end{aligned}
$$

Characterisation of allowed distributions

For $d=2$ and $D=4$ all the possible quasi-probability distributions compatible with assumption 1 are easily characterisable.

These are all the quasi-probability distribution $\vec{q}=\left(q_{1}, q_{2}, q_{3}, q_{4}\right)$ such that:

From quasi-probabilities to quantum states for $d=2$

Quantum as constrained probability

or
Probability as
constrained quantum?

$$
\begin{aligned}
& \mathrm{P}_{2} \\
& \left\{\begin{array} { l l }
{ \vec { q } = (\frac { p } { 2 } , \frac { p } { 2 } , \frac { 1 - p } { 2 } , \frac { 1 - p } { 2 }) } \\
{ \vec { p } = (p , 1 - p) } \\
{ p \in [0 , 1] }
\end{array} \left\{\begin{array}{l}
\vec{q}=\left(\frac{p}{2}, \frac{1-p}{2}, \frac{p}{2}, \frac{1-p}{2}\right) \\
\vec{p}=(p, 1-p) \\
p \in[0,1]
\end{array}\right.\right. \\
& \left\{\begin{array}{l}
\vec{q}=\left(\frac{1-p}{2}, \frac{1-p}{2}, \frac{p}{2}, \frac{p}{2}\right) \\
\vec{p}=(p, 1-p) \\
p \in[0,1]
\end{array}\right.
\end{aligned}
$$

Fine-完

Thank you

